首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
2.

Background

Serum biomarkers can improve diagnosis and treatment of malignant pleural mesothelioma (MPM). However, the evaluation of potential new serum biomarker candidates is hampered by a lack of assay technologies for their clinical evaluation. Here we followed a hypothesis-driven targeted proteomics strategy for the identification and clinical evaluation of MPM candidate biomarkers in serum of patient cohorts.

Results

Based on the hypothesis that cell surface exposed glycoproteins are prone to be released from tumor-cells to the circulatory system, we screened the surfaceome of model cell lines for potential MPM candidate biomarkers. Selected Reaction Monitoring (SRM) assay technology allowed for the direct evaluation of the newly identified candidates in serum. Our evaluation of 51 candidate biomarkers in the context of a training and an independent validation set revealed a reproducible glycopeptide signature of MPM in serum which complemented the MPM biomarker mesothelin.

Conclusions

Our study shows that SRM assay technology enables the direct clinical evaluation of protein-derived candidate biomarker panels for which clinically reliable ELISA’s currently do not exist.  相似文献   

3.

Background

Epidemiological studies have shown that unfiltered coffee consumption is associated with a low incidence of cancer. This study aims to identify the effects of kahweol, an antioxidant diterpene contained in unfiltered coffee, on angiogenesis and key inflammatory molecules.

Methodology/Principal Findings

The experimental procedures included in vivo angiogenesis assays (both the chicken and quail choriallantoic membrane assay and the angiogenesis assay with fluorescent zebrafish), the ex vivo mouse aortic ring assay and the in vitro analysis of the effects of treatment of human endothelial cells with kahweol in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Additionally, two inflammation markers were determined, namely, the expression levels of cyclooxygenase 2 and the levels of secreted monocyte chemoattractant protein-1. We show for the first time that kahweol is an anti-angiogenic compound with inhibitory effects in two in vivo and one ex vivo angiogenesis models, with effects on specific steps of the angiogenic process: endothelial cell proliferation, migration, invasion and tube formation on Matrigel. We also demonstrate the inhibitory effect of kahweol on the endothelial cell potential to remodel extracellular matrix by targeting two key molecules involved in the process, MMP-2 and uPA. Finally, the anti-inflammatory potential of this compound is demonstrated by its inhibition of both COX-2 expression and MCP-1 secretion in endothelial cells.

Conclusion/Significance

Taken together, our data indicate that, indeed, kahweol behaves as an anti-inflammatory and anti-angiogenic compound with potential use in antitumoral therapies. These data may contribute to the explanation of the reported antitumoral effects of kahweol, including the recent epidemiological meta-analysis showing that drinking coffee could decrease the risk of certain cancers.  相似文献   

4.

Background

The role of estrogen and estrogen receptors in oncogenesis has been investigated in various malignancies. Recently our group identified estrogen receptor beta (ERβ) expression as an independent prognostic factor in the progression of human Malignant Pleural Mesothelioma (MMe), but the underlying mechanism by which ERβ expression in tumors determines clinical outcome remains largely unknown. This study is aimed at investigating the molecular mechanisms of ERβ action in MMe cells and disclosing the potential translational implications of these results.

Methods

We modulated ERβ expression in REN and MSTO-211H MMe cell lines and evaluated cell proliferation and EGF receptor (EGFR) activation.

Results

Our data indicate that ERβ knockdown in ER positive cells confers a more invasive phenotype, increases anchorage independent proliferation and elevates the constitutive activation of EGFR-coupled signal transduction pathways. Conversely, re-expression of ERβ in ER negative cells confers a more epithelioid phenotype, decreases their capacity for anchorage independent growth and down-modulates proliferative signal transduction pathways. We identify a physical interaction between ERβ, EGFR and caveolin 1 that results in an altered internalization and in a selective reduced activation of EGFR-coupled signaling, when ERβ is over-expressed. We also demonstrate that differential expression of ERβ influences MMe tumor cell responsiveness to the therapeutic agent: Gefitinib.

Conclusions

This study describes a role for ERβ in the modulation of cell proliferation and EGFR activation and provides a rationale to facilitate the targeting of a subgroup of MMe patients who would benefit most from therapy with Gefitinib alone or in combination with Akt inhibitors.  相似文献   

5.

Background

Malignant mesothelioma cells have an epithelioid or sarcomatoid morphology, both of which may be present in the same tumor. The sarcomatoid phenotype is associated with worse prognosis and heterogeneity of mesothelioma cells may contribute to therapy resistance, which is often seen in mesothelioma. This study aimed to investigate differences in sensitivity between mesothelioma cell lines to anti-cancer drugs. We studied two novel drugs, selenite and bortezomib and compared their effect to four conventional drugs. We also investigated the immunoreactivity of potential predictive markers for drug sensitivity; Pgp, MRP-1, ERCC1, RRM1, TS, xCT and proteasome 20S subunit.

Materials and methods

We treated six mesothelioma cell lines with selenite, bortezomib, carboplatin, pemetrexed, doxorubicin or gemcitabine as single agents and in combinations. Viability was measured after 24 and 48 hours. Immunocytochemistry was used to detect predictive markers.

Results

As a single agent, selenite was effective on four out of six cell lines, and in combination with bortezomib yielded the greatest response in the studied mesothelioma cell lines. Cells with an epithelioid phenotype were generally more sensitive to the different drugs than the sarcomatoid cells. Extensive S-phase arrest was seen in pemetrexed-sensitive cell lines. MRP-1 predicted sensitivity of cell lines to treatment with carboplatin and xCT predicted pemetrexed effect.

Conclusions

The observed heterogeneity in sensitivity of mesothelioma cell lines with different morphology highlights the need for more individualized therapy, requiring development of methods to predict drug sensitivity of individual tumors. Selenite and bortezomib showed a superior effect compared to conventional drugs, motivating clinical testing of these agents as future treatment regime components for patients with malignant mesothelioma.  相似文献   

6.
7.

Background

Prior studies have demonstrated that the distal 1.5 kb of the MMP-1 promoter is fundamental in directing the induction of the MMP-1 gene by cigarette smoke.

Methods

To characterize the genetic variants in the MMP-1 cigarette smoke-responsive element, deep re-sequencing of this element was performed on DNA samples from participants in the Lung Health Study. Furthermore, evidence of Sp1 binding to the MMP-1 promoter was assessed using chromatin immunoprecipitation assays and the influence of cigarette smoke exposure on this interaction was evaluated in cultured human small airway epithelial cells.

Results

Ten polymorphisms (four novel) were detected in the cigarette smoke-responsive element. Chromatin immunoprecipitation assays to assess the protein-DNA interactions at Sp1 sites in the MMP-1 promoter showed increased binding to the Sp1 sites in the cigarette smoke-responsive element in small airway epithelial cells treated with cigarette smoke extract. In contrast, a Sp1 site outside of the element exhibited the opposite effect. None of the polymorphisms were more prevalent in the fast decliners versus the slow decliners (fast decliners = mean −4.14% decline in FEV1% predicted per year vs. decline in FEV1% predicted per year).

Conclusions

Sequencing analyses identified four novel polymorphisms within the cigarette smoke-responsive element of the MMP-1 promoter. This study identifies functional activity within the cigarette smoke-responsive element that is influenced by cigarette smoke and examines this region of the promoter within a small patient population.  相似文献   

8.

Background

DNA repair is a cellular defence mechanism responding to DNA damage caused in large part by oxidative stress. There is a controversy with regard to the effect of red blood cells on DNA damage and cellular response.

Aim

To investigate the effect of red blood cells on H2O2-induced DNA damage and repair in human peripheral blood mononuclear cells.

Methods

DNA breaks were induced in peripheral blood mononuclear cells by H2O2 in the absence or presence of red blood cells, red blood cells hemolysate or hemoglobin. DNA repair was measured by 3H-thymidine uptake, % double-stranded DNA was measured by fluorometric assay of DNA unwinding. DNA damage was measured by the comet assay and by the detection of histone H2AX phosphorylation.

Results

Red blood cells and red blood cells hemolysate reduced DNA repair in a dose-dependent manner. Red blood cells hemolysate reduced % double-stranded DNA, DNA damage and phosphorylation of histone H2AX. Hemoglobin had the same effect as red blood cells hemolysate on % double-stranded DNA.

Conclusion

Red blood cells, via red blood cells hemolysate and hemoglobin, reduced the effect of oxidative stress on peripheral blood mononuclear cell DNA damage and phosphorylation of histone H2AX. Consequently, recruitment of DNA repair proteins diminished with reduction of DNA repair. This suggests that anemia predisposes to increased oxidative stress induced DNA damage, while a higher hemoglobin level provides protection against oxidative-stress-induced DNA damage.  相似文献   

9.
10.
We previously demonstrated that resveratrol and clofarabine elicited a marked cytotoxicity on malignant mesothelioma (MM) MSTO-211H cells but not on the corresponding normal mesothelial MeT-5A cells. Little is known of the possible molecules that could be used to predict preferential chemosensitivity on MSTO-211H cells. Resveratrol and clofarabine induced down-regulation of Mcl-1 protein level in MSTO-211H cells. Treatment of cells with cycloheximide in the presence of proteasome inhibitor MG132 suggested that Mcl-1 protein levels were regulated at the post-translational step. The siRNA-based knockdown of Mcl-1 in MSTO-211H cells triggered more growth-inhibiting and apoptosis-inducing effects with the resultant cleavages of procaspase-3 and its substrate PARP, increased caspase-3/7 activity, and increased percentage of apoptotic propensities. However, the majority of the observed changes were not shown in MeT-5A cells. Collectively, these studies indicate that the preferential activation of caspase cascade in malignant cells might have important applications as a therapeutic target for MM. [BMB Reports 2015; 48(3): 166-171]  相似文献   

11.

Introduction

Glucosylceramide synthase (GCS) is one enzyme that provides a major route for ceramide clearance. Recent evidence has indicated an important role for GCS in multidrug resistance (MDR) tumors. Doxorubicin (DOX)can modulate the expression of GCS in leukemia and ovary cell lines. However, few studies have investigated their relationship in breast cancer;

Methods

We collected 84 excision biopsies from patients with invasive ductal breast cancer of whom 33 patients had undergone preoperative chemotherapy. Immunohistochemistry was used to analyze the expression of GCS protein and significantly showed that the expression of GCS was higher in the samples from patients treated with preoperative chemotherapy(p = 0.018). In order to investigate the underlying mechanism, breast cancer cell lines were cultured with different concentrations of DOX, and mRNA and protein levels of GCS were then detected;

Results

DOX significantly upregulated the expression of GCS at both the mRNA and protein level in ERα-positive MCF-7 cells.We then block down the Sp1 site of GCS promoter, which inhibited the DOX-mediated increase in GCS expression; and after Erα was inhibited in MCF-7 cells, the up-regulation of GCS by DOX also been inhibited.

Conclusions

In conclusion, our data demonstrated the novel finding that DOX could modulate the expression of GCS through the Sp1 site of GCS promoter in ERα-positive breast cancer cells.  相似文献   

12.

Background

In a recent study, we demonstrated the ability of lovastatin, a potent inhibitor of mevalonate synthesis, to inhibit the function of the epidermal growth factor receptor (EGFR). Lovastatin attenuated ligand-induced receptor activation and downstream signaling through the PI3K/AKT pathway. Combining lovastatin with gefitinib, a potent EGFR inhibitor, induced synergistic cytotoxicity in a variety of tumor derived cell lines. The vascular endothelial growth factor receptor (VEGFR) and EGFR share similar activation, internalization and downstream signaling characteristics.

Methodology/Principal Findings

The VEGFRs, particularly VEGFR-2 (KDR, Flt-1), play important roles in regulating tumor angiogenesis by promoting endothelial cell proliferation, survival and migration. Certain tumors, such as malignant mesothelioma (MM), also express both the VEGF ligand and VEGFRs that act in an autocrine loop to directly stimulate tumor cell growth and survival. In this study, we have shown that lovastatin inhibits ligand-induced VEGFR-2 activation through inhibition of receptor internalization and also inhibits VEGF activation of AKT in human umbilical vein endothelial cells (HUVEC) and H28 MM cells employing immunofluorescence and Western blotting. Combinations of lovastatin and a VEGFR-2 inhibitor showed more robust AKT inhibition than either agent alone in the H28 MM cell line. Furthermore, combining 5 µM lovastatin treatment, a therapeutically relevant dose, with two different VEGFR-2 inhibitors in HUVEC and the H28 and H2052 mesothelioma derived cell lines demonstrated synergistic cytotoxicity as demonstrated by MTT cell viability and flow cytometric analyses.

Conclusions/Significance

These results highlight a novel mechanism by which lovastatin can regulate VEGFR-2 function and a potential therapeutic approach for MM through combining statins with VEGFR-2 inhibitors.  相似文献   

13.
14.

Background

Lipid accumulation is the primary evidence of non-alcoholic fatty liver disease (NAFLD). Ginkgo biloba extract (GBE) and its flavonoid ingredients (quercetin, kaempferol, and isorhamnetin) could lessen the lipid accumulation associated with up-regulation of the rate-limiting enzyme, carnitine palmitoyltransferase 1A (CPT1A), in the β-oxidation of long-chain fatty acids. In this study, we investigated the mechanisms by which GBE and its flavonoids induced expression of CPT1A.

Results

CPT1A inhibition with RNAi resulted in triglyceride accumulation in HepG2 cells. Through deletion and mutation analysis of CPT1A’s promoter combined with electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments, the CPT1A promoter region (−50 to −5 nt) was determined to contain two putative Sp1 binding sites, namely Sp1a and Sp1b, which might act as the GBE regulation response DNA element. Sp1 might be induced to transfer from cytoplasma to nucleus to bind the promoter region of −50 to −5 nt by GBE. The regulatory effects of GBE on CPT1A were also verified on the flavonoid ingredients quercetin, kaempferol, and isorhamnetin.

Conclusion

Sp1 was crucial in regulating CPT1A expression with GBE and its flavonoid ingredients, and the −50 to −5 nt region of CPT1A promoter played important roles in Sp1 binding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0087-x) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

P23H rhodopsin, a mutant rhodopsin, is known to aggregate and cause retinal degeneration. However, its effects on retinal pigment epithelial (RPE) cells are unknown. The purpose of this study was to determine the effect of P23H rhodopsin in RPE cells and further assess whether LEDGF1-326, a protein devoid of heat shock elements of LEDGF, a cell survival factor, reduces P23H rhodopsin aggregates and any associated cellular damage.

Methods

ARPE-19 cells were transiently transfected/cotransfected with pLEDGF1-326 and/or pWT-Rho (wild type)/pP23H-Rho. Rhodopsin mediated cellular damage and rescue by LEDGF1-326 was assessed using cell viability, cell proliferation, and confocal microscopy assays. Rhodopsin monomers, oligomers, and their reduction in the presence of LEDGF1-326 were quantified by western blot analysis. P23H rhodopsin mRNA levels in the presence and absence of LEDGF1-326 was determined by real time quantitative PCR.

Principal Findings

P23H rhodopsin reduced RPE cell viability and cell proliferation in a dose dependent manner, and disrupted the nuclear material. LEDGF1-326 did not alter P23H rhodopsin mRNA levels, reduced its oligomers, and significantly increased RPE cell viability as well as proliferation, while reducing nuclear damage. WT rhodopsin formed oligomers, although to a smaller extent than P23H rhodopsin. Further, LEDGF1-326 decreased WT rhodopsin aggregates.

Conclusions

P23H rhodopsin as well as WT rhodopsin form aggregates in RPE cells and LEDGF1-326 decreases these aggregates. Further, LEDGF1-326 reduces the RPE cell damage caused by P23H rhodopsin. LEDGF1-326 might be useful in treating cellular damage associated with protein aggregation diseases such as retinitis pigmentosa.  相似文献   

16.

Objective

To investigate whether lipoxin A4 (LXA4) increases expression of heme oxygenase-1(HO-1) in cardiomyocytes, whether LXA4-induced HO-1 protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury, and what are the mechanisms involved in the LXA4-induced HO-1 induction.

Methods

Rat cardiomyocytes were exposed to H/R injury with or without preincubation with LXA4 or HO-1 inhibitor ZnPP-IX or various signal molecule inhibitors. Expressions of HO-1 protein and mRNA were analyzed by using Western blot and RT-PCR respectively. Activity of nuclear factor E2-related factor 2 (Nrf2) binding to the HO-1 E1 enhancer was assessed by chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE) were measured by using electrophoretic mobility shift assay.

Results

Pretreatment of the cells undergoing H/R lesion with LXA4 significantly reduced the lactate dehydrogenase and creatine kinase productions, increased the cell viability, and increased the expressions of HO-1 protein and mRNA and HO-1 promoter activity. HO-1 inhibition abolished the protective role of LXA4 on the cells undergoing H/R lesion. LXA4 increased p38 mitogen-activated protein kinase (p38 MAPK) activation, nuclear translocation of Nrf2, Nrf2 binding to the HO-1 ARE and E1 enhancer in cardiomyocytes with or without H/R exposure.

Conclusion

The protection role of LXA4 against H/R injury of cardiomyocytes is related to upregulation of HO-1, via activation of p38 MAPK pathway and nuclear translocation of Nrf2 and Nrf2 binding to the HO-1 ARE and E1 enhancer, but not via activation of phosphatidyinositol-3-kinase or extracellular signal-regulated kinase pathway.  相似文献   

17.
18.

Background

Avian influenza H5N1 virus is highly pathogenic partially because its H5 hemagglutinin contains a polybasic cleavage site that can be processed by proteases in multiple organs.

Methods

Monoclonal antibodies (mAb) specific to the synthetic peptide of hemagglutinin polybasic cleavage site of H5N1 virus were raised and tested for their neutralizing potential.

Results

Purified mAb showed suppression of H5N1 pseudovirus infection on Madin-Darby Canine Kidney (MDCK) cells but the efficacy was less than 50%. Since those mAb are specific to the intact uncut polybasic cleavage site of hemagglutinin, their efficacy depends on the extent of hemagglutinin cleavage on the viral surface.

Conclusions

Proteolytic analysis suggests the low efficacy associated with those mAb may be due to proteolytic cleavage already present on the majority of hemagglutinin prior to the infection of virus.  相似文献   

19.

Background

Syndromic surveillance promotes the early detection of diseases outbreaks. Although syndromic surveillance has increased in developing countries, performance on outbreak detection, particularly in cases of multi-stream surveillance, has scarcely been evaluated in rural areas.

Objective

This study introduces a temporal simulation model based on healthcare-seeking behaviors to evaluate the performance of multi-stream syndromic surveillance for influenza-like illness.

Methods

Data were obtained in six towns of rural Hubei Province, China, from April 2012 to June 2013. A Susceptible-Exposed-Infectious-Recovered model generated 27 scenarios of simulated influenza A (H1N1) outbreaks, which were converted into corresponding simulated syndromic datasets through the healthcare-behaviors model. We then superimposed converted syndromic datasets onto the baselines obtained to create the testing datasets. Outbreak performance of single-stream surveillance of clinic visit, frequency of over the counter drug purchases, school absenteeism, and multi-stream surveillance of their combinations were evaluated using receiver operating characteristic curves and activity monitoring operation curves.

Results

In the six towns examined, clinic visit surveillance and school absenteeism surveillance exhibited superior performances of outbreak detection than over the counter drug purchase frequency surveillance; the performance of multi-stream surveillance was preferable to signal-stream surveillance, particularly at low specificity (Sp <90%).

Conclusions

The temporal simulation model based on healthcare-seeking behaviors offers an accessible method for evaluating the performance of multi-stream surveillance.  相似文献   

20.

Background

S1P3 is a lipid-activated G protein-couple receptor (GPCR) that has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. Currently, there are no available high-affinity, subtype-selective drug compounds that can block activation of S1P3. We have developed a monoclonal antibody (7H9) that specifically recognizes S1P3 and acts as a functional antagonist.

Methodology/Principal Findings

Specific binding of 7H9 was demonstrated by immunocytochemistry using cells that over-express individual members of the S1P receptor family. We show, in vitro, that 7H9 can inhibit the activation of S1P3-mediated cellular processes, including arrestin translocation, receptor internalization, adenylate cyclase inhibiton, and calcium mobilization. We also demonstrate that 7H9 blocks activation of S1P3 in vivo, 1) by preventing lethality due to systemic inflammation, and 2) by altering the progression of breast tumor xenografts.

Conclusions/Significance

We have developed the first-reported monoclonal antibody that selectively recognizes a lipid-activated GPCR and blocks functional activity. In addition to serving as a lead drug compound for the treatment of sepsis and breast cancer, it also provides proof of concept for the generation of novel GPCR-specific therapeutic antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号