首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma.  相似文献   

2.
Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.  相似文献   

3.
人类肿瘤大约90%以上源自于上皮。上皮干细胞是唯一长期存在于上皮组织的细胞,可积累多次突变生成肿瘤。所以,人们认为肿瘤多起源于正常干细胞。然而,目前研究中关于上皮肿瘤干细胞及其与正常上皮干细胞的关系了解甚少。现综述近年来有关上皮干细胞和肿瘤发生的关系及其调控机制方面的研究进展。  相似文献   

4.
Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.  相似文献   

5.
Cutaneous wounds persist as a health care crisis in spite of increased understanding of the cellular and molecular responses to injury. Contributing significantly to this crisis is the lack of reliable therapies for treatment of wounds that are slow to heal including chronic wounds and deep dermal wounds that develop hypertrophic scars. This article will review the growing evidence demonstrating the promise of multipotent mesenchymal stem/stromal (MSCs) for the treatment of impaired wound healing. MSCs are often referred to as mesenchymal stem cells despite concerns that these cells are not truly stem cells given the lack of evidence demonstrating self-renewal in vivo. Regardless, abundant evidence demonstrates the therapeutic potential of MSCs for repair and regeneration of damaged tissue due to injury or disease. To date, MSC treatment of acute and chronic wounds results in accelerated wound closure with increased epithelialization, granulation tissue formation and angiogenesis. Although there is evidence for MSC differentiation in the wound, most of the therapeutic effects are likely due to MSCs releasing soluble factors that regulate local cellular responses to cutaneous injury. Important challenges need to be overcome before MSCs can be used effectively to treat wounds that are slow to heal.  相似文献   

6.
The stroma in human carcinomas consists of extracellular matrix and various types of non-carcinoma cells, mainly leukocytes, endothelial cells, fibroblasts, myofibroblasts and bone marrow-derived progenitors. The tumor-associated stroma actively supports tumor growth by stimulating neo-angiogenesis, as well as proliferation and invasion of apposed carcinoma cells. It has long been accepted that alterations within carcinoma cells mediate metastasis in a cell-autonomous fashion. Recent studies have, however, suggested an additional notion that cancer cells instigate local and systemic changes in the tumor microenvironment and contribute to niche formation for metastasis. Research, aiming to establish the roles of the tumor-associated stroma in facilitating the spread of carcinoma cells into distant organs, has provided an abundance of data and greater knowledge of the biology of metastatic carcinoma cells and associated stromal cells. This has stimulated further advances in the development of novel therapeutic approaches targeting tumor metastasis.  相似文献   

7.
We have investigated BM (bone marrow)‐derived MSCs (mesenchymal stem cells) for the treatment of liver injury. It was hypothesized that MSC‐mediated resolution of liver injury could occur through an antioxidative process. After being injected with CCl4 (carbon tetrachloride), mice were injected with syngenic BM‐derived MSCs or normal saline. Oxidative stress activity of the MSCs was determined by the analysis of ROS (reactive oxygen species) and SOD (superoxide dismutase) activity. In addition, cytoprotective genes of the liver tissue were assessed by real‐time PCR and ARE (antioxidant‐response element) reporter assay. Up‐regulated ROS of CCl4‐treated liver cells was attenuated by co‐culturing with MSCs. Suppression of SOD by adding an SOD inhibitor decreased the effect of MSCs on injured liver cells. MSCs significantly increased SOD activity and inhibited ROS production in the injured liver. The gene expression levels of Hmox‐1 (haem oxygenase‐1), BI‐1 (Bax inhibitor‐1), HGF (hepatocyte growth factor), GST (glutathione transferase) and Nrf2 (nuclear factor‐erythoid 2 p45 subunit‐related factor 20), attenuated by CCl4, were increased up to basal levels after MSC transplantation. In addition, MSCs induced an ARE, shown by luciferase activity, which represented a cytoprotective response in the injured liver. Evidence of a new cytoprotective effect is shown in which MSCs promote an antioxidant response and supports the potential of using MSC transplantation as an effective treatment modality for liver disease.  相似文献   

8.
MSCs (mesenchymal stem cells) may be promising seed cells for tissue regeneration because of their self-renewal and multi-differentiation potential. Shh (sonic hedgehog) is involved in the skeletal formation during embryo development and skeletal regeneration. However, how Shh regulates the biological characteristics of BM-MSCs (bone marrow-derived MSCs) is poorly understood. We have investigated the effect of rShh-N (recombinant N-terminal Shh) on the proliferation and osteogenic differentiation of rBM-MSCs (rat BM-MSCs) in vitro. rBM-MSCs were treated with rShh-N at concentrations up to 200 ng/ml. Proliferation and colony-forming ability of rBM-MSCs were increased in a dose-dependent manner. rShh-N increased the ratio of cells in S and G2/M phase, as well as the number of Ki-67+ cells. In addition, ALP (alkaline phosphatase) activity and matrix mineralization were enhanced by 200 ng/ml rShh-N. Real-time PCR showed that rShh-N (200 ng/ml) up-regulated the expression of genes encoding Cbfa-1 (core-binding factor α1), osteocalcin, ALP and collagen type I in rBM-MSCs. This information reveals some potential of rShh-N in the therapeutics of bone-related diseases.  相似文献   

9.
BMSCs (bone‐marrow‐derived mesenchymal stem cells) and ADSCs (adipose tissue‐derived mesenchymal stem cells) are virtually identical in cell surface marker profile and differentiation potential. These cell populations have promising characteristics for clinical application. We have investigated the sensitivity of these cell populations to various chemotherapeutic agents by testing the inhibition of cell proliferation, low molecular DNA bands formation, in situ apoptosis, apoptosis‐related gene expression and cell senescence after treatment. BU (busulfan), methotrexate and doxorubicin treatment led to a marked and dose‐dependent reduction in cell viability compared with 5‐FU (5‐fluorouracil) treatment. Different expression patterns of apoptosis‐related genes were found in the BMSCs and ADSCs following treatment with the agents, but no low molecular mass DNA bands were detected. BMSCs had a higher percentage of apoptotic and senescent cells following treatment with chemotherapeutic agents compared with ADSCs. These findings suggest that these two cell populations respond differently to chemotherapy treatment. ADSCs are more resistant than BMSCs to chemotherapy‐induced senescence and apoptosis, indicating that they might be more advantageous to use in the clinic than BMSCs.  相似文献   

10.
Following the identification of bone marrow multipotent cells that could adhere to plastic and differentiate along numerous mesenchymal lineages in vitro, a considerable effort has been invested in characterizing and expanding these cells, which are now called “mesenchymal stem cells” (MSCs), in vitro. Over the years, numerous lines of evidence have been provided in support of their plasticity, their extraordinary immunomodulatory properties, their potential use for tissue engineering purposes, as well as their ability to be recruited to sites of injury, where they might contribute a “natural in vivo system for tissue repair.” Moreover, some studies have attempted the characterization of their cell‐surface specific antigens and of their anatomical location in vivo. Lastly, it has been shown that similar cells could be also isolated from organs other than the bone marrow. Despite this impressive body of investigations, numerous questions related to the developmental origin of these cells, their proposed pluripotency, and their role in bone modeling and remodeling and tissue repair in vivo are still largely unanswered. In addition, both a systematic phenotypic in vivo characterization of the MSC population and the development of a reproducible and faithful in vivo assay that would test the ability of MSCs to self‐renew, proliferate, and differentiate in vivo are just beginning. This brief review summarizes the current knowledge in the field of study of MSCs and the outstanding questions. J. Cell. Biochem. 109: 277–282, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Tumor microenvironment: the role of the tumor stroma in cancer   总被引:1,自引:0,他引:1  
The tumor microenvironment, composed of non-cancer cells and their stroma, has become recognized as a major factor influencing the growth of cancer. The microenvironment has been implicated in the regulation of cell growth, determining metastatic potential and possibly determining location of metastatic disease, and impacting the outcome of therapy. While the stromal cells are not malignant per se, their role in supporting cancer growth is so vital to the survival of the tumor that they have become an attractive target for chemotherapeutic agents. In this review, we will discuss the various cellular and molecular components of the stromal environment, their effects on cancer cell dynamics, and the rationale and implications of targeting this environment for control of cancer. Additionally, we will emphasize the role of the bone marrow-derived cell in providing cells for the stroma.  相似文献   

12.
13.
In the present study, MSCs (mesenchymal stem cells) were successfully isolated and identified from hUCC (human uterine cervix cancer) tissues. The morphological appearance, immunophenotype, growth curve, cell cycle, cytogenetic features and differentiation potential of these cells were investigated. Results showed that cells isolated from the uterine cervix cancer tissues displayed fibroblast‐like morphology and grew into colonies. Immunophenotyping by flow cytometry revealed that the isolated cells were positive for CD13, CD29, CD44, CD105 and HLA‐I, while negative for CD10, CD14, CD31, CD34, CD38 and HLA‐DR. The cells kept a normal karyotype by chromosome analysis. At the third passage, the percentages of cells in G0‐/G1‐, 2‐/M‐ and S‐phase were 84.94, 8.36 and 6.71%, respectively. Under appropriate induction conditions, these cells can differentiate into osteogenic, adipogenic cells and hepatocytes. Taken together, MSCs were confirmed to exist in hUCC tissues, which may provide a new target for clinical cancer therapy.  相似文献   

14.
15.
Ovarian cancer is the deadliest gynecological malignancy due to its symptomless early stage, metastasis, and high recurrence rate. The tumor microenvironment contributes to the ovarian cancer progression, metastasis, and chemoresistance. Adipose-derived stem cell in the tumor microenvironment of ovarian cancer, as a key player, interacts with ovarian cancer cells to form the cancer-associated fibroblasts and cancer-associated adipocytes, and secretes soluble factors to activate tumor cell signaling, which can promote ovarian cancer metastasis and chemoresistance. We summarize in this review the recent progress in the studies of interactions between adipose-derived stem cell and ovarian cancer, thus, to provide some insight for ovarian cancer therapy through targeting adipose-derived stem cell.  相似文献   

16.
17.
Background information. Although adult bone‐marrow‐derived cell populations have been used to make teeth when recombined with embryonic oral epithelium, the differences between dental and non‐dental stem‐cell‐mediated odontogenesis remain an open question. Results. STRO‐1+ (stromal precursor cell marker) DPSCs (dental pulp stem cells) and BMSSCs (bone marrow stromal stem cells) were isolated from rat dental pulp and bone marrow respectively by magnetic‐activated cell‐sorting techniques. Their odontogenic capacity was compared under the same inductive microenvironment produced by ABCs (apical bud cells) from 2‐day‐old rat incisors. Co‐cultured DPSCs/ABCs in vitro showed more active odontogenic differentiation ability than mixed BMSSCs/ABCs, as indicated by the accelerated matrix mineralization, up‐regulated alkaline phosphatase activity, cell‐cycle modification, and the expression of tooth‐specific proteins and genes. After cultured for 14 days in the renal capsules of rat hosts, recombined DPSC/ABC pellets formed typical tooth‐shaped tissues with balanced amelogenesis and dentinogenesis, whereas BMSSC/ABC recombinants developed into atypical dentin—pulp complexes without enamel formation. DPSC and BMSSC pellets in vivo produced osteodentin‐like structures and fibrous connective tissues respectively. Conclusions. DPSCs presented more striking odontogenic capability than BMSSCs under the induction of postnatal ABCs. This report provides critical insights into the selection of candidate cells for tooth regeneration between dental and non‐dental stem cell populations.  相似文献   

18.
The effects of mesenchymal stem cells (MSCs) on proliferation and cell fate determination of neural stem cells (NSCs) have been investigated. NSCs were co-cultured with MSCs or NIH3T3 cells using an in vitro transwell system. After 4 days, immunofluorescence staining showed that the number of cells positive for the cell proliferation antigen, ki-67, in neurospheres in MSCs was greater than in NIH3T3 cells. In some experiments, the top-layers of MSCs and NIH3T3 cells were removed to induce NSCs differentiation. Seven days after initiating differentiation, the levels of the neuronal marker, NSE, were higher in NSCs in MSCs co-culture group, and those of glial fibrillary acidic protein (GFAP) were lower, compared with NIH3T3 cells co-culture group. These were confirmed by immunofluorescence. The role of the Notch signaling pathway analyzed with the specific inhibitor, DAPT, and by examining the expression of Notch-related genes using RT-PCR showed that after co-culturing with MSCs for 24 h, NSCs expressed much higher levels of ki-67, Notch1, and Hes1 than did NSCs co-cultured with NIH3T3 cells. Treatment with DAPT decreased ki-67, Notch1 and Hes1 expression in NCSs, and increased Mash1 expression. The data indicate that the interactions between MSCs and NSCs promote NSCs proliferation and are involved in specifying neuronal fate, mediated in part by Notch signaling.  相似文献   

19.
Mesenchymal stem or stromal cells (MSCs) from bone marrow or local tissues are recruited to stroma of almost all types of cancers during initiation and/or progression of cancer. The recruited MSCs and their derivative cancer-associated fibroblasts interact with cancer cells to promote sternness, invasion and metastasis of cancer cells. Targeting these cancer-recruited MSCs and/or the interaction between MSCs and cancer cells are promising strategies to improve cancer therapy. On the other hand, the unique tumor-homing capacity of MSCs makes them a promising vehicle to deliver various anti-cancer agents. This review summarized the recent advancement of our understanding on the interaction between MSCs and cancer ceils, as well as the potential of MSCs for cancer therapy.  相似文献   

20.
Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its' clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in-vivo research reviews revealed more controversies in this issue. We expect the new researchers can have a quick understanding of the progress in this filed and design a more comprehensive research based on this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号