首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

2.
Frontline research progresses the applicability of bone marrow and adipose tissue in regenerative medicine, but fails to account for the functional improvement of the diseased. The justification for the failure in terms of stem cell survival, proliferation and regeneration is unclear. However, hyperglycemia rising during pathological conditions might be one such stumbling block. The prevailing literature accounts for both detrimental and beneficial effect of high glucose on mesenchymal stem cells (MSCs) leading to perplexity. Thus, this study focuses on the effect of high glucose on mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow in extensive cultures. We provide evidence for the retention of MSC characteristics of all sources with regards to surface marker profiling, proliferation, differentiation and karyotyping when cultured extensively under DMEM‐HG containing glucose concentration of 25 mmol.l–1. Thus, it can be concluded that hyperglycemia in vivo (11 mmol.l–1) might not be a barrier for the ineffective functional improvement of transplanted stem cells. Furthermore, we elucidated subcutaneous and omentum fat as better sources of MSCs when compared with bone marrow, thereby making these sources optimal for therapies during hyperglycemic conditions. However, further research is needed to clear the path for efficient stem cell transplantation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Human bone marrow mesenchymal stem cells (hMSCs) are a promising source for clinical stem cell transplantation. However, telomere regulation mechanisms, as one of the possible major mechanisms by which hMSCs sustain their stem cell characteristics, remain unknown. We isolated hMSCs by plastic adhesion and characterized these cells by morphology, immune phenotype and differentiation capacity. Telomerase was found negative in hMSCs, but slightly up-regulated in hMSC-derived adipocytes by the Telomeric Repeat Amplification Protocol (TRAP) assay. Moreover, hMSCs lack the alternative lengthening of telomeres (ALT) mechanism, because the hallmarks of ALT, such as very long and heterogeneous telomeres, extra-chromosome telomere repeat DNA (ECTR), and ALT-associated promyelocytic leukemia bodies (APBs), were not evident. However, when hMSCs were arrested in S phase with a combination of serum deprivation and aphidicolin, previously undetectable telomerase activity became predominantly positive. Meanwhile, the expression level of hTERT protein and mRNA increased, paralleled with the appearance of a large cohort of synchronized hMSCs at S phase. These findings provide a profile of telomere regulation by cell cycle dependent expression of telomerase in hMSCs and may lead to a better understanding of the stem cell nature of these cells.  相似文献   

4.
The central nervous system (CNS) has been referred to as the "immunological privileged site". However, it is now clear that the privileged status of the CNS is a result of a balance between immune privilege and effective response. In vitro, human bone marrow mesenchymal stem cells (MSCs) have the ability to differentiate into neurons. Based on this biological attribute we gain the possibility by means of using MSCs as the donors to develop a future cell therapy in clinical application. But using MSCs as donor cells inevitably raises the question as to whether these donor cells would be immunogenic, and if so, would they be rejected after transplantation. To investigate this, human MSCs were cultured in vitro and induced to differentiate along neuronal lineage. The expression of human leukocyte antigen (HLA) class I and class II molecules and the co-stimulatory protein CD80 were increased on the surface of MSCs in the course of neuronal differentiation. But neither of the co-stimulatory proteins, CD40 or CD86, was expressed. After IFN-gamma exposure, the expression of the HLA molecules was further enhanced, but the co-stimulatory proteins were unaffected. MSCs that had been differentiated along neuronal lineage were not capable of inducing the proliferation of peripheral blood lymphocytes (PBLs). Even after IFN-gamma exposure, PBLs remained unresponsive. Furthermore, MSCs differentiated along neuronal lineage suppressed the proliferation of PBLs induced by allogeneic PBLs and mitogens. The mechanisms involved in the immunosuppression may be related to the effect of soluble factors and cell-cell interactions of neuronal differentiated MSCs and PBLs. From the above data we suggested that the low immunogenicity and immunomodulatory function of MSCs in the course of neuronal differentiation in vitro, which will be helpful to further investigation in order to establish the new way for future medical application.  相似文献   

5.
Liu G  Shu C  Cui L  Liu W  Cao Y 《Cryobiology》2008,56(3):209-215
Bone marrow mesenchymal stem cells (MSCs) have become the main cell source for bone tissue engineering. It has been reported that cryopreserved human MSCs can maintain their potential for proliferation and osteogenic differentiation in vitro. There are, however, no reports on osteogenesis with cryopreserved human MSCs in vivo. The aim of this study was to determine whether cryopreservation had an effect on the proliferation capability and osteogenic differentiation of human MSCs on scaffolds in vitro and in vivo. MSCs were isolated from human bone marrow, cultured in vitro until passage 2, and then frozen and stored at −196 °C in liquid nitrogen with 10% Me2SO as cryoprotectant for 24 h. The cryopreserved MSCs were then thawed rapidly, seeded onto partially demineralized bone matrix (pDBM) scaffolds and cultured in osteogenic media containing 10 mM sodium β-glycerophosphate, 50 μM l-ascorbic acid, and 10 nM dexamethasone. Non-cryopreserved MSCs seeded onto the pDBM scaffolds were used as control groups. Scanning electronic microscopy (SEM) observation, DNA content assays, and measurements of alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were applied, and the results showed that the proliferation potential and osteogenic differentiation of MSCs on pDBM in vitro were not affected by cryopreservation. After 2 weeks of subculture, the MSCs/pDBM composites were subcutaneously implanted into the athymic mice. The constructs were harvested at 4 and 8 weeks postimplantation, and histological examination showed tissue-engineered bone formation in the pDBM pores in both groups. Based on these results, it can be concluded that cryopreservation allows human MSCs to be available for potential therapeutic use to tissue-engineer bone.  相似文献   

6.
Adult bone marrow mesenchymal stem cells (MSCs) can differentiate into several types of mesenchymal cells, including osteocytes, chondrocytes, and adipocytes, but can also differentiate into non-mesenchymal cells, such as neural cells, under appropriate experimental conditions. Until now, many protocols for inducing neuro-differentiation in MSCs in vitro have been reported. But due to the differences in MSCs' isolation and culture conditions, the results of previous studies lacked consistency and comparability. In this study, we induced differentiation into neural phenotype in the same MSCs population by three different treatments: beta-mercaptoethanol, serum-free medium and co-cultivation with fetal mouse brain astrocytes. In all of the three treatments, MSCs could express neural markers such as NeuN or GFAP, associating with remarkable morphological modifications. But these treatments led to neural phenotype in a non-identical manner. In serum-free medium, MSCs mainly differentiated into neuron-like cells, expressing neuronal marker NeuN, and BME can promote this process. Differently, after co-culturing with astrocytes, MSCs leaned to differentiate into GFAP(+) cells. These data confirmed that MSCs can exhibit plastic neuro-differentiational potential in vitro, depending on the protocols of inducement.  相似文献   

7.
目的建立小型猪骨髓间充质干细胞(mesenchymal stem cells,MSCs)的体外分离和培养方法。方法穿刺小型猪髂后上嵴抽取骨髓,经密度梯度法离心得到骨髓单个核细胞,接种后形成单层贴壁细胞。用形态学方法鉴定培养的MSCs。结果经培养存活的MSCs原代和一代呈纺锤型、多边型或星型。至二代起呈均一纺锤型,似成纤维细胞样,长宽比例约为(2~3)?1。体外培养的原代MSCs8~10d达到融合,传代后仍具有较强的增殖能力。结论小型猪MSCs可在体外长期、稳定培养,其分离、培养体系的建立为基础研究和组织工程技术提供了一个有价值的动物模型。  相似文献   

8.
AIM: To establish an easily-handled method to isolate mesenchymal stem cells (MSCs) from coagulated human bone marrow samples.METHODS: Thrombin was added to aliquots of seven heparinized human bone marrow samples to mimic marrow coagulation. The clots were untreated, treated with urokinase or mechanically cut into pieces before culture for MSCs. The un-coagulated samples and the clots were also stored at 4 °C for 8 or 16 h before the treatment. The numbers of colony-forming unit-fibroblast (CFU-F) in the different samples were determined. The adherent cells from different groups were passaged and their surface profile was analyzed with flow cytometry. Their capacities of in vitro osteogenesis and adipogenesis were observed after the cells were exposed to specific inductive agents.RESULTS: The average CFU-F number of urokinase-treated samples (16.85 ± 11.77/106) was comparable to that of un-coagulated control samples (20.22 ± 10.65/106, P = 0.293), which was significantly higher than those of mechanically-cut clots (6.5 ± 5.32/106, P < 0.01) and untreated clots (1.95 ± 1.86/106, P < 0.01). The CFU-F numbers decreased after samples were stored, but those of control and urokinase-treated clots remained higher than the other two groups. Consistently, the numbers of the attached cells at passage 0 were higher in control and urokinase-treated clots than those of mechanically-cut clots and untreated clots. The attached cells were fibroblast-like in morphology and homogenously positive for CD44, CD73 and CD90, and negative for CD31 and CD45. Also, they could be induced to differentiate into osteoblasts and adipocytes in vitro.CONCLUSION: Urokinase pretreatment is an optimal strategy to isolate MSCs from human bone marrow samples that are poorly aspirated and clotted.  相似文献   

9.
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow (BM). The interaction between MM cells and the BM microenvironment, and specifically BM mesenchymal stem cells (BM-MSCs), has a key role in the pathophysiology of this disease. Multiple data support the idea that BM-MSCs not only enhance the proliferation and survival of MM cells but are also involved in the resistance of MM cells to certain drugs, aiding the progression of this hematological tumor. The relation of MM cells with the resident BM-MSCs is a two-way interaction. MM modulate the behavior of BM-MSCs altering their expression profile, proliferation rate, osteogenic potential, and expression of senescence markers. In turn, modified BM-MSCs can produce a set of cytokines that would modulate the BM microenvironment to favor disease progression. The interaction between MM cells and BM-MSCs can be mediated by the secretion of a variety of soluble factors and extracellular vesicles carrying microRNAs, long non-coding RNAs or other molecules. However, the communication between these two types of cells could also involve a direct physical interaction through adhesion molecules or tunneling nanotubes. Thus, understanding the way this communication works and developing strategies to interfere in the process, would preclude the expansion of the MM cells and might offer alternative treatments for this incurable disease.  相似文献   

10.
脐静脉和骨髓来源的间充质干细胞的比较研究   总被引:5,自引:0,他引:5  
间充质干细胞(MSCs)的来源有限,成人骨髓是MSCs的主要来源,这极大地限制了其在实验和临床中的应用。为拓宽MSCs来源,从细胞形态、生长特性、免疫表型和多向分化能力等四个方面对人脐静脉来源和成人骨髓来源的间充质干细胞进行了比较研究。结果表明,人脐静脉来源和成人骨髓来源的 MSCs具有相似的生物学特征,成纤维细胞样形态生长,并具有强大的体外扩增和多向分化能力。人脐静脉来源的MSCs可替代成人骨髓MSCs,作为满足实验和临床需要的重要来源。  相似文献   

11.
Transplantation of bone marrow mesenchymal stem cells (MSC), chondrocytes, osteoblasts, or muscle cells promotes regeneration. However, these cells adhere poorly to some scaffolds--depending upon the scaffold material--and are often damaged by proteases or mechanical stimuli at site of transplantation. We found, however, that MSC, chondrocytes, and osteoblasts--along with some other cells--that were exposed to phaseolus vulgaris erythroagglutinin (PHA-E) or concanavalin A (ConA) increased their adhesion capacity on plastic tissue culture dishes and on plates of hydroxyapatite, titanium and poly-DL-lactic-co-glycolic acid (PLGA), and that these cells, moreover, built up resistance to proteases and/or mechanical stimuli. Thus, lectins may have great potential in tissue engineering and cell therapy.  相似文献   

12.
The first non-hematopoietic mesenchymal stem cells (MSCs) were discovered by Friedenstein in 1976, who described clonal, plastic adherent cells from bone marrow capable of differentiating into osteoblasts, adipocytes, and chondrocytes. More recently, investigators have now demonstrated that multi-potent MSCs can be recovered from a variety of other adult tissues and differentiate into numerous tissue lineages including myoblasts, hepatocytes and possibly even neural tissue. Because MSCs are multipotent and easily expanded in culture, there has been much interest in their clinical potential for tissue repair and gene therapy and as a result, numerous studies have been carried out demonstrating the migration and multi-organ engraftment potential of MSCs in animal models and in human clinical trials. This review describes the recent advances in the understanding of MSC biology.  相似文献   

13.
Dry eye syndrome (DES) is considered as an ocular surface inflammatory disease. Previous studies have shown inflammation plays an important role in the progression and onset of DES. Co-culture of human bone marrow mesenchymal stem cells (HBMSCs) and macrophages showed immunomodulatory effects via regulation of cytokine regulation. Thus, the aim of this study was to investigate the effect of the interaction of these cells on in vitro DES model. The conditioned media (CM) from macrophages, HBMSCs, and HBMSCs + macrophages were treated to human corneal epithelial cells, which showed significant reduction in IL-1α and IL-1β expression levels in HBMSCs + macrophages group. Moreover, the IL-1 Receptor Antagonist (IL-1RA) was highly expressed in the CM from the HBMSCs + macrophages group. Wounded eyes of mice were treated with IL-1RA at 0–100 ng/mL for 16 h, the wound size was reduced. The results of this study might lead to the identification of new therapeutic targets for DES.  相似文献   

14.
In this study characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells (hBMCs) was investigated in relation to their capillary network formation potential. Differentiation was performed in presence of vascular endothelial growth factor (VEGF) and insulin like growth factor-1 (IGF-1). A panel of cellular and molecular markers was used for characterization of the endothelial cells. The cells were strongly positive for von Willebrand factor (vWF) and vascular endothelial growth factor receptor 2 (VEGFR2) when measured at protein and mRNA levels. Development of endothelial cells was found to be associated with formation of typical organelles such as Weibel Palade (WP) bodies, Cavealae and pinocytic vesicles. Early vessel growth was also evidenced by showing specific junctions between the cells. The migratory and angiogenic properties of the cells were confirmed by showing capillary network formation in vitro. These results indicate that the capacity of endothelial cells differentiated from hBMSCs in formation of vascular system is consistent with molecular and structural development.  相似文献   

15.
Human mesenchymal stem cell-adhesive peptides were screened based on the amino acid sequence of fibronectin type III domain 8-11 (FN-III8-11) using a peptide array synthesized by the Fmoc-chemistry. Using hexameric peptide library of FN-III8-11 scan, we identified the ALNGR (Ala-Leu-Asn-Gly-Arg) peptide that induced cell adhesion as well as RGDS (Arg-Gly-Asp-Ser) peptide. After incubation for 2 h, approximately 68% of inoculated cells adhere to the ALNGR peptide disk. Adhesion inhibition assay with integrin antibodies showed that the ALNGR peptide interacts with integrin β1 but not with αvβ3, indicating that the receptors for ALNGR are different from RGDS. Additionally, the ALNGR peptide expressed cell specificities for adhesion: cell adhesion was promoted for fibroblasts but not for keratinocytes or endotherial cells. The ALNGR peptide induced cell adhesion and promoted cell proliferation without changing its property. It is therefore useful for the construction of functional biomaterials.  相似文献   

16.
17.
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.  相似文献   

18.
19.
20.
Electroporation has been considered one of the most efficient non-viral based methods to deliver genes regardless of frequently observed high cell mortality. In this study we used a microporation technique to optimise the delivery of plasmid DNA encoding green fluorescence protein (GFP) to human bone marrow mesenchymal stem cells (BM-MSC). Using resuspension buffer (RB) and as low as 1.5 × 105 cells and 1 μg of DNA, we achieved 40% of cells expressing the transgene, with cell recovery and cell viabilities of 85% and 90%, respectively. An increase in DNA amount did not significantly increase the number of transfected cells but clearly reduced cell recovery. A face-centered composite design was used to unveil the conditions giving rise to optimal plasmid delivery efficiencies when using a sucrose based microporation buffer (SBB). The BM-MSC proliferation kinetics were mainly affected by the presence of plasmid and not due to the microporation process itself although no effect was observed on their immunophenotypic characteristics and differentiative potential. Based on the data shown herein microporation demonstrated to be a reliable and efficient method to genetically modify hard-to-transfect cells giving rise to the highest levels of cell survival reported so far along with superior gene delivery efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号