首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIM: This study was conducted to evaluate the toxic effect of gossypol from gossypol-acetic acid, and (+)- and (-)-isomers of gossypol on the growth of Edwardsiella ictaluri. METHODS AND RESULTS: Inhibitory effect of various concentrations of gossypol on the growth of E. ictaluri was determined. Bacterial recovery was performed by preincubation of bacteria in medium containing various concentrations of gossypol and subsequent activation of bacteria by inoculating on gossypol-free plates. Concentrations of racemic gossypol, (+)-gossypol and (-)-gossypol of 1.5 microg ml(-1) or higher significantly reduced the number of bacterial colonies compared with that of the control. The growth of E. ictaluri was completely inhibited on agar plates supplemented with 3 microg ml(-1), regardless of the forms of gossypol. The inhibitory effect of (+)-gossypol was higher than that of (-)-gossypol or gossypol-acetic acid. Recovery of E. ictaluri was <50% for all three forms of gossypol at concentrations of 5 microg ml(-1). Bacterial recovery remained relatively constant (6.5%) at gossypol concentrations from 10 to 100 microg ml(-1). Complete killing of E. ictaluri was not reached at gossypol levels up to 100 microg ml(-1). CONCLUSION: Gossypol-acetic acid, and (+)- and (-)-optical isomers have anti-bacterial effect against E. ictaluri. The results suggest the action is bacteriostatic rather than bactericidal. SIGNIFICANCE AND IMPACT OF THE STUDY: The therapeutic effect of gossypol against E. ictaluri may be useful in controlling enteric septicaemia of catfish.  相似文献   

2.
Gossypol is a polyphenolic pigment, which is employed as a male antifertility drug. It inhibits, among other reported effects, the growth of cultured mammalian cells, spermiogenesis, flagellar motility in Trypanosoma and sperm, dynein ATPase and the lactate dehydrogenase X (LDH-X) isozyme. We have characterized the non-covalent binding of gossypol to purified calf brain tubulin in 10 mM phosphate buffer, 0.1 mM GTP pH 7.0 at 25 degrees C. Equilibrium measurements were performed by difference spectroscopy. A peak at 435 nm was produced by the perturbation of gossypol light absorption upon binding to tubulin. The experimental isotherm was fitted by 1.96 +/- 0.06 gossypol binding sites per tubulin molecule, with identical apparent equilibrium binding constants of (7.5 +/- 1.1) X 10(4) M-1. The complex formed could be separated from free gossypol by gel chromatography. Binding of gossypol was independent of the presence of 0.1 mM GTP in the buffer. Gossypol did not affect the binding of ligands to the colchicine site. Gossypol interacted with vinblastine but apparently did not bind to the vinblastine sites of tubulin. Gossypol did not displace anilinonaphthalene sulphonate (ANS) bound to tubulin, but caused a strong (fivefold) quenching of its fluorescence. This indicated that gossypol probably binds in the vicinity of the ANS site of tubulin. Gossypol inhibited in vitro microtubule assembly at the same concentration range employed in the binding studies. An increase in the critical protein concentration required for polymerisation was observed, most simply interpreted by a stoichiometric mechanism. Gossypol did not induce any noticeable distortion of the microtubules observed under the electron microscope. This compound constitutes a new tubulin ligand and an inhibitor of microtubule assembly in vitro.  相似文献   

3.
A concentrated mixture of gossypol, 6-methoxy-gossypol, and 6,6'-dimethoxy-gossypol was extracted from the root bark of St. Vincent Sea Island cotton with acetone. This extract was derivatized with R-(-)-2-amino-1-propanol to form diastereomeric gossypol Schiff's bases. Analytical-scale reverse-phase chromatography of these Schiff's bases produced six peaks, indicating separation of the enantiomeric forms of the three gossypol compounds. The elution order of the peaks was found to vary with the polarity of the mobile phase. The chromatography was scaled to a preparative level and was used to isolate each compound. After hydrolysis of the separated Schiff's bases, the original compounds were recovered by precipitation from solutions of diethyl ether, acetic acid, and water. Fifty injections yielded approximately 500 mg of each methoxy-gossypol enantiomer and 300 mg of each dimethoxy-gossypol enantiomer. Each compound was characterized for carbon and hydrogen content, optical rotation, UV-vis light absorption, and melting point. Standard curves were developed and were used to measure the concentration of each gossypol form in the root bark and dehulled seed of St. Vincent Sea Island cotton. In seed tissue, 48% of the gossypol compounds were methylated, and the (-)-optical form was found to be in a slight excess to the (+)-optical form (53-54%) for all three compounds. In root bark, 71% of the gossypol compounds were methylated, and the (+)-optical form was in excess to the (-)-optical form for all three compounds. However, in this tissue the extent of enantiomeric excess decreased with the degree of methylation, with 77% of the gossypol existing in the (+)-optical form and 59% of the 6,6'-dimethoxy-gossypol existing in the (+)-optical form.  相似文献   

4.
Concentrations of (+) and (-) gossypol were measured by high performance liquid chromatography after they were incubated with plasma proteins in vitro. The concentration of (-) gossypol decreased more than the concentration of (+) gossypol. A similar decrease in free gossypol concentrations in the blood plasma of rats was observed after intravenous infusion of gossypol enantiomers. The concentration of (-) gossypol was also found to be lower than the concentration of (+) gossypol at the blood-testis barrier. The biological effect of (-) gossypol probably results from its stereospecific binding to extra- and intracellular proteins in vivo and inhibition of the biological activity of some proteins.  相似文献   

5.
Binding of lithocholic acid, bilirubin, and gossypol to glutathione S-transferase B (ligandin or transferase YaYc) was compared using four methods. Tryptophan quenching revealed a single high affinity site for bilirubin and gossypol but could not be used for lithocholic acid. Both displacement of the fluorescent probe, 1-anilino-8-naphthalenesulfonate, and spectral changes induced by bilirubin binding demonstrated a common high affinity site for which all three ligands compete. Similar results were obtained by equilibrium dialysis. The dissociation constants for the binding of both bilirubin and lithocholic acid were comparable with the various methods (range 0.2-0.7 microM). Thus, lithocholic acid and bilirubin share a high affinity binding site on gluthathione S-transferase B that appears to be separate from the binding site for substrates.  相似文献   

6.
In order to clarify the interaction of gossypol with proteins, the pure diastereoisomeric Schiff bases from L-tryptophan methyl ester and both gossypol enantiomers were prepared. Their c.d. and n.m.r. spectra demonstrate that the interaction between gossypol and tryptophan, previously reported to involve a weakly associated complex, consists in Schiff base formation. Recent studies on enzyme inhibition by gossypol are discussed; it is suggested that nonspecific covalent binding of gossypol to proteins may be responsible for a significant proportion of the in vitro effects of gossypol.  相似文献   

7.
The circular dichroism bands of (+) gossypol in the spectral region 300-400 nm have been shown to be sensitive to interactions with proteins. Using CD spectroscopy, gossypol has been shown to interact with lactate dehydrogenase, malate dehydrogenase, alkaline phosphatase, lysozyme, protamine and poly-L-lysine. Binding to proteins generally results in a pronounced red shift of the long wavelength CD band (approximately 380-430 nm) accompanied by a reduction in ellipticity. The changes in spectral parameters of the 1Lb binaphthyl transition may reflect a distortion from a nearly perpendicular gossypol conformation, on binding to proteins.  相似文献   

8.
The present work was carried out to investigate the transport characteristics of gossypol, a toxic weak organic acid (pK = 7.2) contained in cottonseed, into the rabbit renal cortical slice. The uptake of gossypol increased linearly during a 2-hr incubation after which it leveled off with the average slice-to-medium concentration ratio (S/M) slightly above 20. In the presence of metabolic inhibitors, the S/M gossypol leveled off at about 9, suggesting an extensive binding of gossypol to tissue proteins. The uptake of gossypol was significantly inhibited by p-aminohippurate (PAH), probenecid, ouabain, and DIDS, all of which are known inhibitors of renal organic anion transport. However, the gossypol uptake was not affected by tetraethylammonium (TEA), a prototypical organic cation. Kinetic studies indicated that the apparent Km for gossypol transport is 0.28 mM, and also that probenecid inhibits gossypol transport in a competitive manner. It is concluded that gossypol is transported by the renal tubule through the classic organic anion system.  相似文献   

9.
The role of different gossypol tautomers in the interaction of this molecule with membranes has been investigated using the isolated hemiacetal moiety of gossypol and the pH dependency of the keto-enol tautomeric equilibrium. Our results indicate that: the actions of the hemiacetal tautomer cannot explain the effects of gossypol on mitochondrial oxidative phosphorylation, lipid membrane interfacial potentials, and proton conductance of lipid bilayers; the enolate forms of gossypol are the species that bind to the membrane interface and decrease the electrostatic interfacial potential; and the uncharged (keto and/or enol) species in equilibrium with the enolate forms of gossypol give the molecule the ability to carry protons across biological membranes.  相似文献   

10.
The interaction of gossypol with bovine serum albumin, human serum albumin and n-bromosuccinimide-modified bovine serum albumin has been followed by fluorescence quenching measurements. The presence of a high affinity site (association constant K = 2.2 x 10(6) M-1) for gossypol on bovine serum albumin and human serum albumin is indicated. The stoichiometry of binding for the high affinity site was evaluated using Job's method of continuous variation, thereby suggesting the formation of 1:1 complex. Modification of the tryptophan residues on bovine serum albumin does not affect the binding of gossypol to either high or low affinity site of albumin.  相似文献   

11.
We have used three polarity-sensitive fluorescence probes, 6-propionyl 2-(N,N-dimethyl-amino) naphthalene (Prodan), pyrene and 8-anilino 1-naphthalene sulphonic acid, to study their binding with erythroid and nonerythroid spectrin, using fluorescence spectroscopy. We have found that both bind to prodan and pyrene with high affinities with apparent dissociation constants (Kd) of .50 and .17?μM, for prodan, and .04 and .02?μM, for pyrene, respectively. The most striking aspect of these bindings have been that the binding stoichiometry have been equal to 1 in erythroid spectrin, both in dimeric and tetrameric form, and in tetrameric nonerythroid spectrin. From an estimate of apparent dielectric constants, the polarity of the binding site in both erythroid and nonerythroid forms have been found to be extremely hydrophobic. Thermodynamic parameters associated with such binding revealed that the binding is favored by positive change in entropy. Molecular docking studies alone indicate that both prodan and pyrene bind to the four major structural domains, following the order in the strength of binding to the Ankyrin binding domain?>?SH3 domain?>?Self-association domain?>?N-terminal domain of α-spectrin of both forms of spectrin. The binding experiments, particularly with the tetrameric nonerythroid spectrin, however, indicate more toward the self association domain in offering the unique binding site, since the binding stoichiometry have been 1 in all forms of dimeric and tetrameric spectrin, so far studied by us. Further studies are needed to characterize the hydrophobic binding sites in both forms of spectrin.  相似文献   

12.
We investigated the role of gossypol isomers binding to blood plasma, seminal plasma and spermatozoa to elucidate gossypol anti-fertility action in the teleost fish, rainbow trout (Oncorhynchus mykiss). Growth and hematological indicators of males were depressed when fish meal protein in diets was completely replaced with cottonseed meal. The cottonseed meal contained equal proportions of (-) (47.8+/-1.6%) and (+) gossypol isomers. Concentrations of spermatozoa were decreased with increasing proportions of gossypol in diets (from 0.22% to 0.95%); however, sperm motility and fertilizing ability were not affected. In contrast to mammals, steroid hormone concentrations were not suppressed in fish given diets with gradual increase of gossypol level. Gossypol concentrations were 100-fold higher in blood plasma than in seminal plasma, confirming a barrier in gossypol transfer between the general circulation and the testis. Spermatozoa accumulated predominantly (+) enantiomer (65-75%) with decreasing proportions as dietary gossypol concentrations increased. Spermatozoa bound most of the gossypol contained in the semen; however, this did not result in impairment of the sperm motility apparatus. Teleost fish sperm rely on ATP stores that accumulate during maturation as a source of energy during activation. In addition, the duration of sperm movement is short in these fish. As such, we hypothesize that the major action of gossypol on mammalian sperm, which is uncoupling of oxidative phosphorylation, does not impair the energy supply required for flagellar beating in fish spermatozoa.  相似文献   

13.
Gossypol inhibits estrogen binding to rat alpha-fetoprotein   总被引:1,自引:0,他引:1  
M E Baker 《FEBS letters》1984,175(1):41-44
We find that gossypol, a male anti-fertility compound, is a reversible competitive inhibitor of estrogen binding to rat alpha-fetoprotein (AFP). The Kd of gossypol for rat AFP is 1.75 microM, which is similar to gossypol's affinity for lactate dehydrogenase isozyme X, the putative site where gossypol exerts its anti-fertility effects. Reacting sodium cyanoborohydride with gossypol reduces its affinity for AFP, showing that intact aldehyde groups on gossypol are important for binding to rat AFP and indicating that gossypol is specifically inter-acting with a nucleophilic site on AFP that influences estrogen binding.  相似文献   

14.
Binding of gossypol by gossypin and congossypin and their succinylated and sulfhydryl group-blocked derivatives has been measured. The binding by gossypin and congossypin is characterized by weak interaction. Succinylation of gossypin decreases the binding affinity whereas that of congossypin increases it. Blocking of sulfhydryl groups of both the proteins does not significantly affect gossypol binding, Succinylation dissociates gossypin and causes conformational changes whereas it does not dissociate congossypin but causes conformational changes. Sulfhydryl group blocking does not dissociate gossypin or congossypin, nor does it cause any conformational changes.  相似文献   

15.
Catalytic activity and stability of glucoamylases immobilized by different methods (adsorption, covalent binding) are studied comparatively. The highest stability is shown to be obtained under covalent binding. The binding efficiency and immobilized glucoamylase properties depend on the nature of insoluble carrier and a purification degree of the enzyme preparations. The choice of the cross-linking agent promoting a binding between the enzyme and the carrier is very significant. The activity and stability of immobilized glucoamylases obtained when using different cross-linking agents rise in such a sequence: 2,4-toluylenediisocyanate, cyanurochloride, glutaric dialdehyde, gossypol. Catalytic properties and stability are determined for soluble and immobilized glucoamylase forms from different sources.  相似文献   

16.
B Richey  H Decker  S J Gill 《Biochemistry》1985,24(1):109-117
The binding of oxygen and carbon monoxide to hemocyanin from the mangrove crab Scylla serrata and the lobster Homarus americanus has been studied by thin-layer optical absorption and front face fluorescence techniques. Three types of experiments were performed on subunit and oligomeric preparations of each hemocyanin: oxygen binding, carbon monoxide binding, and oxygen-carbon monoxide competition studies. The results obtained from the subunit preparations of dissociated oligomers from both hemocyanins show that the binding site can be ligated by either one oxygen or one carbon monoxide. The binding results obtained with the oligomeric samples of hemocyanin from both species cannot be described by the two-state MWC model [Monod, J., Wyman, J., & Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118] since the data from the three types of binding experiments cannot be fit with a single set of binding constants. The MWC model has been extended by including a third allosteric form, and an analysis based on the three-state model is able to fit the data from the three types of experiments with the same set of binding constants. The comparison of the oxygen to carbon monoxide affinity ratios (kO2/kCO) indicates that the structure around the binding site of subunits in the T form oligomer is similar to that of the free subunits. The oligomeric forms of both these hemocyanins bind carbon monoxide with a weak but definite positive cooperativity. An analysis of the affinity ratios for the T, S, and R forms suggests that the high affinity of the R form results from a specific interaction between oxygen and binding site.  相似文献   

17.
18.
The reversible inhibition of calcineurin (CaN), which is the only Ca(2+)/calmodulin-dependent protein Ser/Thr phosphatase, is thought to be a key functional event for most cyclosporin A (CsA)- and tacrolimus (FK506)-mediated biological effects. In addition to CaN inhibition, however, CsA and FK506 have multiple biochemical effects because of their action in a gain-of-function model that requires prior binding to immunophilic proteins. We screened a small molecule library for direct inhibitors of CaN using CaN-mediated dephosphorylation of (33)P-labeled 19-residue phosphopeptide substrate (RII phosphopeptide) as an assay and found the polyphenolic aldehyde gossypol to be a novel CaN inhibitor. Unlike CsA and FK506, gossypol does not require a matchmaker protein for reversible CaN inhibition with an IC(50) value of 15 microm. Gossypolone, a gossypol analog, showed improved inhibition of both RII phosphopeptide and p-nitrophenyl phosphate dephosphorylation with an IC(50) of 9 and 6 microm, respectively. In contrast, apogossypol hexaacetate was inactive. Gossypol acts noncompetitively, interfering with the binding site for the cyclophilin 18.CsA complex in CaN. In contrast to CsA and FK506, gossypol does not inactivate the peptidyl-prolyl-cis/trans-isomerase activity of immunophilins. Similar to CsA and FK506, T cell receptor signaling induced by phorbol 12-myristate 13-acetate/ionomycin is inhibited by gossypol in a dose-dependent manner, demonstrated by the inhibition of nuclear factor of activated T cell (NFAT) c1 translocation from the cytosol into the nucleus and suppression of NFAT-luciferase reporter gene activity.  相似文献   

19.
【背景】棉粕中游离棉酚的存在制约了棉粕作为饲料蛋白源的利用,棉酚的微生物降解问题成为研究热点。本实验室前期发现枯草芽孢杆菌(Bacillus subtilis) M-4菌株具有较强的降解棉酚能力,而且已经应用于棉粕脱毒工业。【目的】进一步提高枯草芽孢杆菌M-4菌株降解棉粕中棉酚的能力,扩大棉粕在养殖业的应用领域。【方法】采用常压室温等离子体诱变(atmospheric and room temperature plasma,ARTP)技术对菌株M-4进行诱变,以液体培养条件下的棉酚降解率为初筛指标,筛选获得正向突变株。以棉粕固体发酵条件下的棉酚降解率为复筛指标,测定初筛获得的正向突变株实际降解棉粕中游离棉酚的能力。以棉酚残存量和棉酚降解率为检测指标,采用单因素试验优化固体条件下棉粕发酵条件,获得突变株发酵棉粕的最适工艺参数。【结果】初筛获得正向突变株19株。复筛得到一株高效的突变株MY-4-17,在棉粕固体发酵条件下其棉酚降解率高达97.15%,比菌株M-4的棉酚降解率提高了2.55%。经过5次传代培养,突变株MY-4-17的遗传稳定性良好。突变株MY-4-17发酵棉粕的最适工艺参数为...  相似文献   

20.
Gossypol is a polyphenolic secondary metabolite produced by cotton plants, which is toxic to many organisms. Gossypol's aldehyde groups are especially reactive, forming Schiff bases with amino acids of proteins and cross-linking them, inhibiting enzyme activities and contributing to toxicity. Very little is known about gossypol's mode of action and its detoxification in cotton-feeding insects that can tolerate certain concentrations of this compound. Here, we tested the toxicity of gossypol and a gossypol derivative lacking free aldehyde groups (SB-gossypol) toward Helicoverpa armigera and Heliothis virescens, two important pests on cotton plants. Larval feeding studies with these two species on artificial diet supplemented with gossypol or SB-gossypol revealed no detectable toxicity of gossypol, when the aldehyde groups were absent. A cytochrome P450 enzyme, CYP6AE14, is upregulated in H. armigera feeding on gossypol, and has been claimed to directly detoxify gossypol. However, using in vitro assays with heterologously expressed CYP6AE14, no metabolites of gossypol were detected, and further studies suggest that gossypol is not a direct substrate of CYP6AE14. Furthermore, larvae feeding on many other plant toxins also upregulate CYP6AE14. Our data demonstrate that the aldehyde groups are critical for the toxicity of gossypol when ingested by H. armigera and H. virescens larvae, and suggest that CYP6AE14 is not directly involved in gossypol metabolism, but may play a role in the general stress response of H. armigera larvae toward plant toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号