首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme ATP:GTP 3'-diphosphotransferase catalyzes the transfer of the beta, gamma-pyrophosphate of ATP to the 3' position of GTP or GDP. The amounts of enzyme were measured in cell extracts of a relA+ strain of E. coli grown at different growth rates between 0.4 and 1.9 generations per hour, using precipitation with specific antibodies to purify the enzyme. The amount of enzyme was found to be a constant fraction of total protein at all growth rates corresponding to about 45 molecules of enzyme per genome equivalent of DNA. The purified enzyme has little catalytic activity by itself but has to be activated either by a complex of 70S ribosomes, mRNA and uncharged tRNA or by a solvent like ethanol at a concentration of about 20%. The kinetic constants of the enzyme for the transfer pyrophosphate from ATP to GTP in the ribosome-activated state were determined. The Vmax was estimated to be 140 mumol/min X mg at 37 degrees C and the S0.5 values for GTP and ATP were 0.35 and 0.53 mM, respectively. The reaction was estimated to have an equilibrium constant of about 300. In the pyrophosphate transfer from ATP to GDP the Vmax was estimated to be 90 mumol/min X mg at 37 degrees C and the S0.5 for GDP as 0.3 mM. During amino acid starvation of a relA+ strain of E. coli the amounts of enzyme and the catalytic capacity of the enzyme are sufficient to maintain the observed ppGpp levels in the cells at all growth rates.  相似文献   

2.
The effects of two polypeptide antibiotics, polymixin B and gramicidin S, on the intracellular pool size and turnover of guanosine tetraphosphate (ppGpp) were analyzed in stringent (relA+) and relaxed (relA) strains of Escherichia coli. When either one of these two drugs was added to stringent bacteria cultures at a final concentration that blocked protein and RNA synthesis, ppGpp was found to accumulate. Under similar conditions of inhibition of macromolecular synthesis, ppGpp also appeared to accumulate in relaxed bacteria. Moreover, in either type of strain, no significant accumulation of guanosine pentaphosphate (pppGpp) could be detected upon drug treatment. It was, therefore, concluded that polymixin and gramicidin elicit ppGpp accumulation through a mechanism independent of the relA gene product and, consequently, quite distinct from the stringent control system triggered by amino acid starvation. Further experiments performed by using tetracycline as an inhibitor of ppGpp synthesis, showed that the increase in the level of this nucleotide induced by drug action was due, in fact, to a strong restriction of its degradation rate.  相似文献   

3.
Relaxed mutants of Escherichia coli RNA polymerase   总被引:9,自引:0,他引:9  
V Nene  R E Glass 《FEBS letters》1983,153(2):307-310
When Escherichia coli cells are treated with either polymixin or gramicidin at concentrations that block protein and RNA synthesis, they accumulate a significant amount of guanosine tetraphosphate ppGpp. Such accumulation occurs in stringent (relA+) as well as in relaxed (relA) strains and no guanosine pentaphosphate pppGpp is then detected within the cells. These observations suggest that polypeptide antibiotics elicit ppGpp formation through a mechanism different from the stringent control system triggered by amino acid starvation of bacteria. Experiments based on tetracycline action indicate, moreover, that the accumulation of ppGpp under polymixin or gramicidin treatment is connected with a strong restriction of the degradation rate of this nucleotide.  相似文献   

4.
The relA gene of Escherichia coli encodes guanosine 3',5'-bispyrophosphate (ppGpp) synthetase I, a ribosome-associated enzyme that is activated during amino acid starvation. The stringent response is thought to be mediated by ppGpp. Mutations in relA are known to result in pleiotropic phenotypes. We now report that three different relA mutant alleles, relA1, relA2, and relA251::kan, conferred temperature-sensitive phenotypes, as demonstrated by reduced plating efficiencies on nutrient agar (Difco) or on Davis minimal agar (Difco) at temperatures above 41 degrees C. The relA-mediated temperature sensitivity was osmoremedial and could be completely suppressed, for example, by the addition of NaCl to the medium at a concentration of 0.3 M. The temperature sensitivities of the relA mutants were associated with decreased thermotolerance; e.g., relA mutants lost viability at 42 degrees C, a temperature that is normally nonlethal. The spoT gene encodes a bifunctional enzyme possessing ppGpp synthetase and ppGpp pyrophosphohydrolase activities. The introduction of the spoT207::cat allele into a strain bearing the relA251::kan mutation completely abolished ppGpp synthesis. This ppGpp null mutant was even more temperature sensitive than the strain carrying the relA251::kan mutation alone. The relA-mediated thermosensitivity was suppressed by certain mutant alleles of rpoB (encoding the beta subunit of RNA polymerase) and spoT that have been previously reported to suppress other phenotypic characteristics conferred by relA mutations. Collectively, these results suggest that ppGpp may be required in some way for the expression of genes involved in thermotolerance.  相似文献   

5.
6.
Glutamine phosphoribosylpyrophosphate amidotransferase, the first enzyme of purine biosynthesis, has previously been shown to be rapidly inactivated and degraded in Bacillus subtilis cells at the end of growth. The loss of enzyme activity appears to involve the oxidation of an iron-sulfur cluster in the enzyme. The degradation of the inactive enzyme involves some elements of the stringent response because it is inhibited in relA and relC mutants. Intracellular pools of guanosine tetra- and pentaphosphate were measured by an improved extraction procedure in cells that had been manipulated in various ways to induce or inhibit amidotransferase degradation. The results are consistent with the hypothesis that one or both of these nucleotides stimulates the synthesis of a protein involved in degradation. An elevated level of these nucleotides was not required for the continued degradation of amidotransferase once it had begun.  相似文献   

7.
In a wild-type strain (relA+) of Escherichia coli, starvation of amino acid led to an immediate cessation of the synthesis of stable ribonucleic acids, together with the accumulation of an unusual nucleotide, guanosine 5'-diphosphate 3'-diphosphate, commonly known as ppGpp. This compound also accumulated during heat shock. When temperature-sensitive protein synthesis elongation factor G (EF-G) was introduced into E. coli NF859, a relA+ strain, the synthesis of ppGpp was reduced to approximately one-half that of wild-type EF-G+ cells at a nonpermissive temperature of 40 degrees C. Furthermore, fusidic acid, an inhibitor of protein synthesis which specifically inactivates EF-G, prevented any accumulation of ppGpp during the heat shock. We suggest that a functional EF-G protein is necessary for ppGpp accumulation under temperature shift conditions, possibly by mediating changes in the function of another protein, the relA gene product. However, EF-G is probably not required for the synthesis of ppGpp during the stringent response, since its inactivation did not prevent ppGpp accumulation during amino acid starvation.  相似文献   

8.
The regulation of branched-chain amino acid transport and periplasmic binding proteins was studied in Escherichia coli strains which were isogenic except for the relA locus, the gene for the "stringent factor," which is responsible for guanosine tetraphosphate synthesis. The strain containing the relA mutation could not be derepressed for the synthesis of leucine transport or binding proteins when shifted from a medium containing all 20 amino acids in excess to one in which leucine was limiting. The relA+ strain showed normal derepression under these conditions.  相似文献   

9.
A spontaneously occurring thiostrepton-resistant mutant of Bacillus megaterium has been shown to yield ribosomes lacking protein BM-L11, a protein immunologically related to Escherichia coli ribosomal protein L11. Here we have demonstrated that the mutant strain has acquired the relaxed phenotype and is unable to synthesise guanosine tetraphosphate and pentaphosphate in vivo. Ribosomes from the mutant strain are unable to support the synthesis of these two compounds in vitro, but this deficiency can be overcome by re-addition of purified protein BM-L11 to the ribosomes. Thus protein BM-L11 appears to be indispensable for the synthesis of guanosine tetraphosphate and pentaphosphate; the implications of this observation are discussed.  相似文献   

10.
11.
Both ribosomes and a cell-free extract (S-30) prepared from an Escherichia coli spoT mutant catalyzed the synthesis of guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) as efficiently as did ribosomes and S-30 from a spoT+ strain. In both cases, the level of pppGpp reached its maximum before ppGpp maximally accumulated. pppGpp added to the ribosome system was rapidly converted to ppGpp. These results indicate that the spoT+ gene product may not have a direct role in the synthesis of pppGpp and that pppGpp is a precursor of ppGpp.  相似文献   

12.
A mutant of Escherichia coli has been isolated that contains a large deletion (about 3 X 10(7) daltons of deoxyribonucleic acid) encompassing argA, fuc, and relA. This mutant strain (AA-787) is also cold sensitive for growth at 18 degrees C. Strain AA-787 was obtained fortuitously as a cold-sensitive pseudorevertant of a strain having a heat-sensitive peptidyl-transfer ribonucleic acid hydrolase. Genetic analysis, using transduction and interrupted mating, showed the cold sensitivity mutation to be located adjacent to relA. Further analysis demonstrated loss of relA, fuc, and argA gene functions but retention of eno and recB, closely linked genes adjacent to relA and argA, respectively. Unusually high cotransduction of flanking markers (cysC and thyA) indicated loss of approximately 1 min of the E. coli genetic map in strain AA-787. Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) was synthetized in mutant strain AA-787 at basal levels, and ppGpp synthesis was stimulated by carbon-source downshift. No ppGpp synthesis could be obtained using ribosomes isolated from strain AA-787. These findings, taken together, show that deletion of relA in E. coli does not completely abolish ppGpp synthesis and suggests that another enzyme system must also be responsible for ppGpp synthesis.  相似文献   

13.
14.
15.
16.
M Karrasch  G B?rner  M Enssle  R K Thauer 《FEBS letters》1989,253(1-2):226-230
Formylmethanofuran dehydrogenase, a key enzyme of methanogenesis, was purified 100-fold from methanol grown Methanosarcina barkeri to apparent homogeneity and a specific activity of 34 mumol.min-1.mg protein-1. Molybdenum was found to co-migrate with the enzyme activity. The molybdenum content of purified preparations was 3-4 nmol per mg protein equal to 0.6-0.8 mol molybdenum per mol enzyme of apparent molecular mass 200 kDa. Evidence is presented that also formylmethanofuran dehydrogenase from H2/CO2 grown Methanobacterium thermoautotrophicum (strain Marburg) is a molybdoenzyme.  相似文献   

17.
18.
In Escherichia coli the relA and pyrG loci are 99% cotransducible. On the basis of this knowledge, we have isolated lambdacI857S7dpyrG transducing bacteriophages carrying both the pyrG and relA genes. Single lysogens of this bacteriophage show basal levels of ppGpp that are 10-fold higher than normal. Stringent factor is present among the gene products synthesized by lambdadpyrG relA after infection of ultraviolet-killed cells, as analyzed by polyacrylamide gel electrophoresis. The intracellular content of stringent factor, as determined by enzymatic activity, rises 20-fold after induction of a single lysogen of lambdadpyrG relA. As measured by two-dimensional gel electrophoresis, the amount of stringent factor in an exponentially growing strain carrying a pyrG relA plasmid is at least 10-fold greater than in a normal strain. These data constitute strong evidence that stringent factor is the relA gene product.  相似文献   

19.
relA and spoT are designations for two unlinked Escherichia coli genes whose products function in the synthesis and degradation of guanosine 3',5'-bispyrophosphate during the stringent regulatory response to amino acid deprivation. The RelA protein catalyzes an ATP:GTP 3'-pyrophosphoryl group transfer reaction, and the SpoT protein has a guanosine 3',5'-bispyrophosphate 3'-pyrophosphohydrolyase activity. Both genes have been sequenced recently; the relA gene produces an 84-kDa protein, and the spoT gene is deduced to encode a 79-kDa protein. We report here that the protein sequences of the relA and spoT genes are extensively interrelated.  相似文献   

20.
Dihydroxyacetone (DHA) kinase of Klebsiella pneumoniae, a gene product of the dha regulon responsible for fermentative dissimilation of glycerol and DHA, was purified 120-fold to a final specific activity of 10 mumol X min-1 X mg of protein-1 at 30 degrees C. The enzyme, a dimer of a 53,000 +/- 5,000-dalton polypeptide, is highly specific for DHA (Km, ca.4 microM). Glycerol is not a substrate at 1 mM and is not an inhibitor even at 100 mM. The enzyme is not inhibited by 5 mM fructose-1,6-diphosphate. Ca2+ gives a higher enzyme activity than Mg2+ as a cationic cofactor. Escherichia coli glycerol kinase acts on both glycerol and DHA and is allosterically inhibited by fructose-1,6-diphosphate. Antibodies raised against E. coli glycerol kinase cross-reacted with K. pneumoniae glycerol kinase but not with K. pneumoniae DHA kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号