首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three large pedigrees of German descent with autosomal dominant "pure" familial spastic paraplegia (FSP) were characterized clinically and genetically. Haplotype and linkage analyses, with microsatellites covering the FSP region on chromosome 14q (locus FSP1), were performed. In pedigree W, we found a haplotype that cosegregates with the disease and observed three crossing-over events, reducing the FSP1 candidate region to 7 cM; in addition, the observation of apparent anticipation in this family suggests a trinucleotide repeat expansion as the mutation. In pedigrees D and S, the gene locus could be excluded from the whole FSP1 region, confirming the locus heterogeneity of autosomal dominant FSP.  相似文献   

2.
3.
The mutant in a family with autosomal-dominant spastic paresis in Northern Tibet was mapped by linkage analysis with several microsatellite markers to a gene locus at 14q11.2–q24.3, an area to which a few mutants leading to a condition with similar clinical signs have previously been mapped. The mutant observed in this pedigree probably arose de novo. Gene loci at 2p21– p24 and 15q, which have been found for other pedigrees with dominant spastic paresis, were excluded. The data in this pedigree do not contradict the hypothesis proposed by another group that there might be anticipation. Received: 28 April 1997 / Accepted: 10 June 1997  相似文献   

4.
Retinitis pigmentosa is a genetically heterogeneous form of retinal degeneration, which has X-linked, autosomal recessive and autosomal dominant forms. The disease genes in families with autosomal dominant retinitis pigmentosa (adRP) have been linked to six loci, on 3q, 6p, 7p, 7q, 8q and 19q. In a large American family with late-onset adRP, microsatellite markers were used to test for linkage to the loci on 3q, 6p, 7p, 7q and 8q. Linkage was found to 7q using the marker D7S480. Additional microsatellite markers from 7q were then tested. In total, five markers, D7S480, D7S514, D7S633, D7S650 and D7S677, show statistically significant evidence for link-age in this family, with a maximum two-point lod score of 5.3 at 0% recombination from D7S514. These results confirm an earlier report of linkage to an adRP locus (RP10) in an unrelated family of Spanish origin and indicate that RP10 may be a significant gene for inherited retinal degeneration. In addition, we used recently reported microsatellite markers from 7q to refine the linkage map of the RP10 locus.  相似文献   

5.
The locus (RP1) for one form of autosomal dominant retinitis pigmentosa (adRP) was mapped on chromosome 8q11-q22 between D8S589 and D8S285, which are about 8 cM apart, by linkage analysis in an extended family ascertained in the USA. We have studied a multigeneration Australian family with adRP and found close linkage without recombination between the disease locus and D8S591, D8S566, and D8S166 (Zmax = 1.137– 4.650 at θ = 0.00), all mapped in the region known to harbor RP1. Assuming that the mutation of the same gene is responsible for the disease in both families, the analysis of multiply informative meioses in the American and Australian families places the adRP locus between D8S601 and D8S285, which reduces the critical region to about 4 cM, corresponding to approximately 4 Mb, which is completely covered by a yeast artificial chromosome contig assembled recently. Received: 23 April 1996 / Accepted: 3 July 1996  相似文献   

6.
Autosomal dominant pure hereditary spastic paraplegia (ADPHSP) is clinically characterized by slowly progressive lower-limb spasticity. The condition is genetically heterogeneous, and loci have been mapped at chromosomes 2p, 8q, 14q, and 15q. We have performed a genomewide linkage screen on a large family with ADPHSP, in which linkage to all four previously known loci was excluded. Analysis of markers on chromosome 12q gave a peak pairwise LOD score of 3.61 at D12S1691, allowing us to assign a new locus for ADPHSP (a locus that we have designated "SPG10") to this region. Haplotype construction and analysis of recombination events narrowed the SPG10 locus to a 9.2-cM region between markers D12S368 and D12S83. In addition, our data strongly suggest that there are at least six ADPHSP loci, since we describe a further family in which linkage to all five known ADPHSP loci has been excluded.  相似文献   

7.
Linkage studies with 17q and 18q markers in a breast/ovarian cancer family.   总被引:2,自引:1,他引:1  
Genes on chromosomes 17q and 18q have been shown to code for putative tumor suppressors. By a combination of allele-loss studies on sporadic ovarian carcinomas and linkage analysis on a breast/ovarian cancer family, we have investigated the involvement of such genes in these diseases. Allele loss occurred in sporadic tumors from both chromosome 17p, in 18/26 (69%) cases, and chromosome 17q, in 15/22 (68%) cases. In the three familial tumors studied, allele loss also occurred on chromosome 17 (in 2/3 cases for 17p markers and in 2/2 cases for a 17q allele). Allele loss on chromosome 18q, at the DCC (deleted in colorectal carcinomas) locus, was not as common (6/16 cases [38%]) in sporadic ovarian tumors but had occurred in all three familial tumors. The results of linkage analysis on the breast/ovarian cancer family suggested linkage between the disease locus and 17q markers, with a maximum lod score of 1.507 obtained with Mfd188 (D17S579) polymorphism at 5% recombination. The maximum lod score for DCC was 0.323 at 0.1% recombination. In this family our results are consistent with a predisposing gene for breast/ovarian cancer being located at chromosome 17q21.  相似文献   

8.
Progressive familial intrahepatic cholestasis (PFIC) is the second most common form of familial intrahepatic cholestasis. The genes for PFIC and for a milder form of the disease, benign recurrent intrahepatic cholestasis (BRIC), were recently mapped to a 19-cM region on chromosome 18q21–q22. The results suggest that PFIC and BRIC are allelic diseases. We have studied 11 Swedish patients from eight families with clinical and biochemical features consistent with PFIC. The families were genotyped for markers D18S69, D18S64, D18S55 and D18S68, spanning the PFIC candidate region. Unexpectedly, the segregation of haplotypes excluded the entire region in three families, and no indications for shared haplotypes were found in the patients of the six remaining families. A four-point linkage analysis of all families excluded linkage from D18S69 to D18S55 (Zmax < –5). Thus, our data strongly suggest the presence of a second, yet unknown, locus for PFIC. The results indicate that great care should be taken when using 18q markers for prenatal diagnosis and genetic counseling for the disease. Received: 12 February 1997 / Accepted: 11 April 1997  相似文献   

9.
We performed a genomewide scan and genetic linkage analysis, to identify loci associated with age-related macular degeneration (AMD). We collected 70 families, ranging from small nuclear families to extended multigenerational pedigrees and consisting of a total of 344 affected and 217 unaffected members available for genotyping. We performed linkage analyses using parametric and allele-sharing models. We performed the analyses on the complete pedigrees but also subdivided the families into nuclear pedigrees. Finally, to dissect potential genetic factors responsible for differences in disease manifestation, we stratified the sample by two major AMD phenotypes (neovascular AMD and geographic atrophy) and by age of affected family members at the time of our evaluation. We have previously demonstrated linkage between AMD and 1q25-31 in a single large family. In the combined sample, we have detected the following loci with scores exceeding a LOD=2 cutoff under at least one of the models considered: 1q31 (HLOD=2.07 at D1S518), 3p13 (HLOD=2.19 at D3S1304/D3S4545), 4q32 (HLOD=2.66 at D4S2368, for the subset of families with predominantly dry AMD), 9q33 (LODZlr=2.01 at D9S930/D9S934), and 10q26 (HLOD=3.06 at D10S1230). Using correlation analysis, we have found a statistically significant correlation between LOD scores at 3p13 and 10q26, providing evidence for epistatic interactions between the loci and, hence, a complex basis of AMD. Our study has identified new loci that should be considered in future mapping and mutational analyses of AMD and has strengthened the evidence in support of loci suggested by other studies.  相似文献   

10.
H. Eiberg  Jan Mohr 《Human genetics》1996,98(5):518-521
The Dombrock blood group system (DO) is a common polymorphism in Caucasians, represented by two red cell antigen alleles. In a linkage study in our family material of 832 families from the Copenhagen area, we found a strong indication of tight linkage with the two flanking DNA polymorphisms D12S358 (z = 7.66; at θ M = 0.001, θ F = 0.031) and D12S364 (z = 8.53; at θ M = 0.068, θ F = 0.031). DO is assigned to the region 12p13.2– 12p12.1 by physically localised markers. Received: 18 April 1996 / Revised: 4 July 1996  相似文献   

11.
Both the discovery of the DYT1 gene on chromosome 9q34 in autosomal dominant early-onset torsion dystonia and the detection of linkage for one form of adult-onset focal dystonia to chromosome 18p (DYT7) in a family from northern Germany provide the opportunity to further investigate genetic factors in the focal dystonias. Additionally, reports of linkage disequilibrium between several chromosome 18 markers and focal dystonia, both in sporadic patients from northern Germany and in members of affected families from central Europe suggest the existence of a founder mutation underlying focal dystonia in this population. To evaluate the role of these loci in focal dystonia, we tested 85 patients from northern Germany who had primary focal dystonia, both for the GAG deletion in the DYT1 gene on chromosome 9q34 and for linkage disequilibrium at the chromosome 18p markers D18S1105, D18S1098, D18S481, and D18S54. None of these patients had the GAG deletion in the DYT1 gene. Furthermore, Hardy-Weinberg analysis of markers on 18p in our patient population and in 85 control subjects from the same region did not support linkage disequilibrium. Taken together, these results suggest that most cases of focal dystonia in patients of northern German or central European origin are due neither to the GAG deletion in DYT1 nor to a proposed founder mutation on chromosome 18p but must be caused by other genetic or environmental factors.  相似文献   

12.
BACKGROUND: NTDs are considered complex disorders that arise from an interaction between genetic and environmental factors. NTD family 8776 is a large multigenerational Caucasian family that provides a unique resource for the genetic analysis of NTDs. Previous linkage analysis using a genome‐wide SNP screen in family 8776 with multipoint nonparametric mapping methods identified maximum LOD* scores of ~3.0 mapping to 2q33.1–q35 and 7p21.1–pter. METHODS: We ascertained an additional nuclear branch of 8776 and conducted additional linkage analysis, fine mapping, and haplotyping. Expression data from lymphoblast cell lines were used to prioritize candidate genes within the minimum candidate intervals. Genomic copy number changes were evaluated using BAC tiling arrays and subtelomeric fluorescent in situ hybridization probes. RESULTS: Increased evidence for linkage was observed with LOD* scores of ~3.3 for both regions. Haplotype analyses narrowed the minimum candidate intervals to a 20.3 Mb region in 2q33.1–q35 between markers rs1050347 and D2S434, and an 8.3 Mb region in 7p21.1–21.3 between a novel marker 7M0547 and rs28177. Within these candidate regions, 16 genes were screened for mutations; however, no obvious causative NTD mutation was identified. Evaluation of chromosomal aberrations using comparative genomic hybridization arrays, subtelomeric fluorescent in situ hybridization, and copy number variant detection techniques within the 2q and 7p regions did not detect any chromosomal abnormalities. CONCLUSIONS: This large NTD family has identified two genomic regions that may harbor NTD susceptibility genes. Ascertainment of another branch of family 8776 and additional fine mapping permitted a 9.1 Mb reduction of the NTD candidate interval on chromosome 7 and 37.3 Mb on chromosome 2 from previously published data. Identification of one or more NTD susceptibility genes in this family could provide insight into genes that may affect other NTD families. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Paroxysmal dystonic choreoathetosis (PDC) is a rare neurological disorder characterized by episodes of involuntary movement, involving the extremities and face, which may occur spontaneously or be precipitated by caffeine, alcohol, anxiety, and fatigue. PDC is transmitted as an autosomal dominant trait with incomplete penetrance. A gene implicated in this paroxysmal disorder has been mapped to a 10–15 cM region on chromosome 2q31–36 in two families. We describe a third family with PDC. Two-point linkage analyses with markers linked to the candidate PDC locus were performed. A maximum two-point LOD score of 4.20 at a recombination fraction of zero was obtained for marker D2S120, confirming linkage to the distal portion of chromosome 2q. The anion exchanger gene, SLC2C, maps to this region, but the family was poorly informative for polymorphic markers within and flanking this candidate gene. Haplotype analysis revealed a critical recombination event that confines the PDC gene to a 5-cM region bounded by the markers D2S164 and D2S377. We compared the haplotype in our family with that in another chromosome 2-linked PDC family, but did not detect a region of shared genotypes. However, identifying a third family whose disease maps to the same region and narrowing the critical region will facilitate identification of the 2q-linked PDC gene. Received: 10 June 1997 / Accepted: 17 September 1997  相似文献   

14.
Restless legs syndrome (RLS) is a common neurological condition with three loci (12q, 14q, and 9p) described so far, although none of these genes has yet been identified. We report a genomewide linkage scan of patients with RLS (n=37) assessed in a population isolate (n=530) of South Tyrol (Italy). Using both nonparametric and parametric analyses, we initially obtained suggestive evidence of a novel locus on chromosome 2q, with nominal evidence of linkage on chromosomes 5p and 17p. Follow-up genotyping yielded significant evidence of linkage (nonparametric LOD score 5.5, P相似文献   

15.
It has been reported that BCL3 on chromosome 19q, or a nearby gene, may play a role in the etiology of non-syndromic cleft lip with or without cleft palate (NSCL/P) in some families. We tested 30 USA and 11 Mexican multiplex NSCL/P families for four markers on chromosome 19q: D19S178, APOC2/AC1, APOC2/007, and BCL3. While likelihood-based linkage analysis failed to show significant evidence of linkage, the transmission disequilibrium test indicated highly significant deviation from independent assortment of allele 3 at the BCL3 marker in both data sets (USA:P = 0.001; Mexican: P = 0.018; both combined: P < 0.001) and for allele 13 of the D19S178 marker in the Mexican data set (P = 0.004). These results support an association, possibly due to linkage disequilibrium, between chromosome 19 markers and a putative NSCL/P locus. Received: 10 May 1996 / Revised: 31 July 1996  相似文献   

16.
Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.  相似文献   

17.
Genomewide linkage analysis has been extremely successful at identification of the genetic variation underlying single-gene disorders. However, linkage analysis has been less successful for common human diseases and other complex traits in which multiple genetic and environmental factors interact to influence disease risk. We hypothesized that a highly heritable complex trait, in which the contribution of environmental factors was relatively limited, might be more amenable to linkage analysis. We therefore chose to study stature (adult height), for which heritability is approximately 75%-90% (Phillips and Matheny 1990; Carmichael and McGue 1995; Preece 1996; Silventoinen et al. 2000). We reanalyzed genomewide scans from four populations for which genotype and height data were available, using a variance-components method implemented in GENEHUNTER 2.0 (Pratt et al. 2000). The populations consisted of 408 individuals in 58 families from the Botnia region of Finland, 753 individuals in 183 families from other parts of Finland, 746 individuals in 179 families from Southern Sweden, and 420 individuals in 63 families from the Saguenay-Lac-St.-Jean region of Quebec. Four regions showed evidence of linkage to stature: 6q24-25, multipoint LOD score 3.85 at marker D6S1007 in Botnia (genomewide P<.06), 7q31.3-36 (LOD 3.40 at marker D7S2195 in Sweden, P<.02), 12p11.2-q14 (LOD 3.35 at markers D12S10990-D12S398 in Finland, P<.05) and 13q32-33 (LOD 3.56 at markers D13S779-D13S797 in Finland, P<.05). In a companion article (Perola et al. 2001 [in this issue]), strong supporting evidence is obtained for linkage to the region on chromosome 7. These studies suggest that highly heritable complex traits such as stature may be genetically tractable and provide insight into the genetic architecture of complex traits.  相似文献   

18.
Benign adult familial myoclonic epilepsy (BAFME) has been mapped to chromosome 8q23.3–q24.1, 2p11.1–q12.1, 5p15.31–p15.1, and 3q26.32–3q28, in Japanese, Italian, Thai, and French pedigrees, respectively. Recently, we investigated a Chinese BAFME family. Clinical and electrophysiological studies revealed that nine individuals were affected with BAFME. We aimed to establish the causative gene for this pedigree. We genotyped 17 microsatellite markers covering the four previously identified chromosome regions and performed linkage analyses. The linkage analysis data showed that the LOD score was 2.80 for D5S486 at no recombination. This suggested linkage to 5p15.31–p15.1 and excluded linkage to the other three loci (LOD score <0 at no recombination). Our study suggests that the causative gene responsible for BAFME in the Chinese pedigree may be located on chromosome 5p15.31–p15.1.  相似文献   

19.
The significance of gallbladder wall thickness (GBWT) in regard to gallbladder disease (GBD) is not completely understood. Thickening of the gallbladder wall has been observed in patients with acute calculous and acalculous cholecystitis and chronic cholecystitis. However, various pathologic processes, such as gallbladder cancer and nonbiliary disorders such as liver cirrhosis and viral hepatitis, could also cause thickening of the gallbladder wall. To date, there is no report available on the genetic factors influencing GBWT. Therefore we sought to estimate the heritability (h2) of GBWT and to perform a genome-wide search to identify the susceptibility genes for GBWT, using data from the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), a family study of Mexican Americans. GBWT was measured by ultrasound. After adjusting for the significant effects of age, sex, GBD (i.e., asymptomatic gallstones), metabolic syndrome, and duration of type 2 diabetes (T2DM), GBWT was found to be under significant and appreciable additive genetic influences (h2 +/- SE = 0.38 +/- 0.09, P < 0.0001). The strongest evidence for linkage occurred between markers D11S912 and D11S968 on chromosome 11q24-q25 (LOD = 2.7), where we have already shown suggestive evidence for linkage of GBD (LOD = 2.7) in a subset of our SAFDGS data. Potential evidence for linkage occurred at markers D1S1728 (1p31.1; LOD = 1.4) and D16S748 (16p13.1; LOD = 1.4), respectively. In conclusion, our study provides suggestive evidence for linkage of GBWT on chromosome 11q in Mexican Americans, and future tasks of mapping susceptibility gene(s) for GBD and its related traits, such as GBWT, in this chromosomal region can be fruitful.  相似文献   

20.
To examine the genetic basis of age-related macular degeneration (ARMD), a degenerative disease of the retinal pigment epithelium and neurosensory retina, we conducted a genomewide scan in 34 extended families (297 individuals, 349 sib pairs) ascertained through index cases with neovascular disease or geographic atrophy. Family and medical history was obtained from index cases and family members. Fundus photographs were taken of all participating family members, and these were graded for severity by use of a quantitative scale. Model-free linkage analysis was performed, and tests of heterogeneity and epistasis were conducted. We have evidence of a major locus on chromosome 15q (GATA50C03 multipoint P=1.98x10-7; empirical P< or =1.0x10-5; single-point P=3.6x10-7). This locus was present as a weak linkage signal in our previous genome scan for ARMD, in the Beaver Dam Eye Study sample (D15S659, multipoint P=.047), but is otherwise novel. In this genome scan, we observed a total of 13 regions on 11 chromosomes (1q31, 2p21, 4p16, 5q34, 9p24, 9q31, 10q26, 12q13, 12q23, 15q21, 16p12, 18p11, and 20q13), with a nominal multipoint significance level of P< or =.01 or LOD > or =1.18. Family-by-family analysis of the data, performed using model-free linkage methods, suggests that there is evidence of heterogeneity in these families. For example, a single family (family 460) individually shows linkage evidence at 8 loci, at the level of P<.0001. We conducted tests for heterogeneity, which suggest that ARMD susceptibility loci on chromosomes 9p24, 10q26, and 15q21 are not present in all families. We tested for mutations in linked families and examined SNPs in two candidate genes, hemicentin-1 and EFEMP1, in subsamples (145 and 189 sib pairs, respectively) of the data. Mutations were not observed in any of the 11 exons of EFEMP1 nor in exon 104 of hemicentin-1. The SNP analysis for hemicentin-1 on 1q31 suggests that variants within or in very close proximity to this gene cause ARMD pathogenesis. In summary, we have evidence for a major ARMD locus on 15q21, which, coupled with numerous other loci segregating in these families, suggests complex oligogenic patterns of inheritance for ARMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号