首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BLAST+: architecture and applications   总被引:5,自引:0,他引:5  

Background  

Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications.  相似文献   

3.

Background  

BLAST is a widely used genetic research tool for analysis of similarity between nucleotide and protein sequences. This paper presents a software application entitled "Squid" that makes use of grid technology. The current version, as an example, is configured for BLAST applications, but adaptation for other computing intensive repetitive tasks can be easily accomplished in the open source version. This enables the allocation of remote resources to perform distributed computing, making large BLAST queries viable without the need of high-end computers.  相似文献   

4.

Background  

During the last few years, DNA sequence analysis has become one of the primary means of taxonomic identification of species, particularly so for species that are minute or otherwise lack distinct, readily obtainable morphological characters. Although the number of sequences available for comparison in public databases such as GenBank increases exponentially, only a minuscule fraction of all organisms have been sequenced, leaving taxon sampling a momentous problem for sequence-based taxonomic identification. When querying GenBank with a set of unidentified sequences, a considerable proportion typically lack fully identified matches, forming an ever-mounting pile of sequences that the researcher will have to monitor manually in the hope that new, clarifying sequences have been submitted by other researchers. To alleviate these concerns, a project to automatically monitor select unidentified sequences in GenBank for taxonomic progress through repeated local BLAST searches was initiated. Mycorrhizal fungi – a field where species identification often is prohibitively complex – and the much usedITSlocus were chosen as test bed.  相似文献   

5.

Background  

Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary.  相似文献   

6.

Background  

BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming.  相似文献   

7.

Background  

Bacterial typing schemes based on the sequences of genes encoding surface antigens require databases that provide a uniform, curated, and widely accepted nomenclature of the variants identified. Due to the differences in typing schemes, imposed by the diversity of genes targeted, creating these databases has typically required the writing of one-off code to link the database to a web interface. Here we describe agdbNet, widely applicable web database software that facilitates simultaneous BLAST querying of multiple loci using either nucleotide or peptide sequences.  相似文献   

8.

Background  

The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task.  相似文献   

9.

Background  

With the exponential increase in genomic sequence data there is a need to develop automated approaches to deducing the biological functions of novel sequences with high accuracy. Our aim is to demonstrate how accuracy benchmarking can be used in a decision-making process evaluating competing designs of biological function predictors. We utilise the Gene Ontology, GO, a directed acyclic graph of functional terms, to annotate sequences with functional information describing their biological context. Initially we examine the effect on accuracy scores of increasing the allowed distance between predicted and a test set of curator assigned terms. Next we evaluate several annotator methods using accuracy benchmarking. Given an unannotated sequence we use the Basic Local Alignment Search Tool, BLAST, to find similar sequences that have already been assigned GO terms by curators. A number of methods were developed that utilise terms associated with the best five matching sequences. These methods were compared against a benchmark method of simply using terms associated with the best BLAST-matched sequence (best BLAST approach).  相似文献   

10.
Mittler T  Levy M  Chad F  Karen S 《Bioinformation》2010,5(5):224-226
Basic Local Alignment Search Tool, (BLAST) allows the comparison of a query sequence/s to a database of sequences and identifies those sequences that are similar to the query above a user-defined threshold. We have developed a user friendly web application, MULTBLAST that runs a series of BLAST searches on a user-supplied list of proteins against one or more target protein or nucleotide databases. The application pre-processes the data, launches each individual BLAST search on the University of Nevada, Reno''s-TimeLogic DeCypher® system (available from Active Motif, Inc.) and retrieves and combines all the results into a simple, easy to read output file. The output file presents the list of the query proteins, followed by the BLAST results for the matching sequences from each target database in consecutive columns. This format is especially useful for either comparing the results from the different target databases, or analyzing the results while keeping the identification of each target database separate.

Availability

The application is available at the URLhttp://blastpipe.biochem.unr.edu/  相似文献   

11.

Background  

Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins.  相似文献   

12.
Maglich JM  Sluder A  Guan X  Shi Y  McKee DD  Carrick K  Kamdar K  Willson TM  Moore JT 《Genome biology》2001,2(8):research0029.1-research00297

Background

The availability of complete genome sequences enables all the members of a gene family to be identified without limitations imposed by temporal, spatial or quantitative aspects of mRNA expression. Using the nearly completed human genome sequence, we combined in silico and experimental approaches to define the complete human nuclear receptor (NR) set. This information was used to carry out a comparative genomic study of the NR superfamily.

Results

Our analysis of the human genome identified two novel NR sequences. Both these contained stop codons within the coding regions, indicating that both are pseudogenes. One (HNF4 γ-related) contained no introns and expressed no detectable mRNA, whereas the other (FXR-related) produced mRNA at relatively high levels in testis. If translated, the latter is predicted to encode a short, non-functional protein. Our analysis indicates that there are fewer than 50 functional human NRs, dramatically fewer than in Caenorhabditis elegans and about twice as many as in Drosophila. Using the complete human NR set we made comparisons with the NR sets of C. elegans and Drosophila. Searches for the >200 NRs unique to C. elegans revealed no human homologs. The comparative analysis also revealed a Drosophila member of NR subfamily NR3, confirming an ancient metazoan origin for this subfamily.

Conclusions

This work provides the basis for new insights into the evolution and functional relationships of NR superfamily members.  相似文献   

13.

Background  

BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality.  相似文献   

14.

Background  

Homology is a key concept in both evolutionary biology and genomics. Detection of homology is crucial in fields like the functional annotation of protein sequences and the identification of taxon specific genes. Basic homology searches are still frequently performed by pairwise search methods such as BLAST. Vast improvements have been made in the identification of homologous proteins by using more advanced methods that use sequence profiles. However additional improvement could be made by exploiting sources of genomic information other than the primary sequence or tertiary structure.  相似文献   

15.

Background  

Structural similarities among proteins can provide valuable insight into their functional mechanisms and relationships. As the number of available three-dimensional (3D) protein structures increases, a greater variety of studies can be conducted with increasing efficiency, among which is the design of protein structural alphabets. Structural alphabets allow us to characterize local structures of proteins and describe the global folding structure of a protein using a one-dimensional (1D) sequence. Thus, 1D sequences can be used to identify structural similarities among proteins using standard sequence alignment tools such as BLAST or FASTA.  相似文献   

16.

Background  

Fungi from environmental samples are typically identified to species level through DNA sequencing of the nuclear ribosomal internal transcribed spacer (ITS) region for use in BLAST-based similarity searches in the International Nucleotide Sequence Databases. These searches are time-consuming and regularly require a significant amount of manual intervention and complementary analyses. We here present software – in the form of an identification pipeline for large sets of fungal ITS sequences – developed to automate the BLAST process and several additional analysis steps. The performance of the pipeline was evaluated on a dataset of 350 ITS sequences from fungi growing as epiphytes on building material.  相似文献   

17.

Background

Large-scale sequence studies requiring BLAST-based analysis produce huge amounts of data to be parsed. BLAST parsers are available, but they are often missing some important features, such as keeping all information from the raw BLAST output, allowing direct access to single results, and performing logical operations over them.

Findings

We implemented BlaSTorage, a Python package that parses multi BLAST results and returns them in a purpose-built object-database format. Unlike other BLAST parsers, BlaSTorage retains and stores all parts of BLAST results, including alignments, without loss of information; a complete API allows access to all the data components.

Conclusions

BlaSTorage shows comparable speed of more basic parser written in compiled languages as C++ and can be easily integrated into web applications or software pipelines.  相似文献   

18.

Background  

Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous.  相似文献   

19.

Background

BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM) for searching the database in round i?+?1. Biegert and S?ding developed Context-sensitive BLAST (CS-BLAST), which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch.

Results

We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST), which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI??s Conserved Domain Database (CDD). On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST.

Conclusions

DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the ??Protein BLAST?? link at http://blast.ncbi.nlm.nih.gov.

Reviewers

This article was reviewed by Arcady Mushegian, Nick V. Grishin, and Frank Eisenhaber.  相似文献   

20.

Background

An important task in a metagenomic analysis is the assignment of taxonomic labels to sequences in a sample. Most widely used methods for taxonomy assignment compare a sequence in the sample to a database of known sequences. Many approaches use the best BLAST hit(s) to assign the taxonomic label. However, it is known that the best BLAST hit may not always correspond to the best taxonomic match. An alternative approach involves phylogenetic methods, which take into account alignments and a model of evolution in order to more accurately define the taxonomic origin of sequences. Similarity-search based methods typically run faster than phylogenetic methods and work well when the organisms in the sample are well represented in the database. In contrast, phylogenetic methods have the capability to identify new organisms in a sample but are computationally quite expensive.

Results

We propose a two-step approach for metagenomic taxon identification; i.e., use a rapid method that accurately classifies sequences using a reference database (this is a filtering step) and then use a more complex phylogenetic method for the sequences that were unclassified in the previous step. In this work, we explore whether and when using top BLAST hit(s) yields a correct taxonomic label. We develop a method to detect outliers among BLAST hits in order to separate the phylogenetically most closely related matches from matches to sequences from more distantly related organisms. We used modified BILD (Bayesian Integral Log-Odds) scores, a multiple-alignment scoring function, to define the outliers within a subset of top BLAST hits and assign taxonomic labels. We compared the accuracy of our method to the RDP classifier and show that our method yields fewer misclassifications while properly classifying organisms that are not present in the database. Finally, we evaluated the use of our method as a pre-processing step before more expensive phylogenetic analyses (in our case TIPP) in the context of real 16S rRNA datasets.

Conclusion

Our experiments make a good case for using a two-step approach for accurate taxonomic assignment. We show that our method can be used as a filtering step before using phylogenetic methods and provides a way to interpret BLAST results using more information than provided by E-values and bit-scores alone.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号