首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
By searching a Chlamydomonas expressed sequence tag database and by comparing the retrieved data with homologous sequences from a DNA database, we identified an expressed Chlamydomonas reinhardtii putative major intrinsic protein (MIP) gene. The nucleotide sequence, consisting of 1,631 bp, contains an open reading frame coding for a 300-amino-acid protein named CrMIP1. It possesses conserved NPA motifs, but is not highly homologous to known aquaporins. CrMIP1 was expressed in Saccharomyces cerevisiae and assayed for water and glycerol transport activity. By the stopped-flow spectrophotometric assay, CrMIP1 did not enhance the osmotic water permeability of membrane vesicles of the yeast transformant. However, the transformant cells showed glycerol transport activity in the in vivo assay using [14C]glycerol. This is the first report on the isolation and functional identification of a MIP member from algae.  相似文献   

4.
5.
6.
The availability of the complete DNA sequence of the Chlamydomonas reinhardtii genome and advanced computational biology tools has allowed elucidation and study of the small ubiquitin-like modifier (SUMO) system in this unicellular photosynthetic alga and model eukaryotic cell system. SUMO is a member of a ubiquitin-like protein superfamily that is covalently attached to target proteins as a post-translational modification to alter the localization, stability, and/or function of the target protein in response to changes in the cellular environment. Three SUMO homologs (CrSUMO96, CrSUMO97, and CrSUMO148) and three novel SUMO-related proteins (CrSUMO-like89A, CrSUMO-like89B, and CrSUMO-like90) were found by diverse gene predictions, hidden Markov models, and database search tools inferring from Homo sapiens, Saccharomyces cerevisiae, and Arabidopsis thaliana SUMOs. Among them, CrSUMO96, which can be recognized by the A. thaliana anti-SUMO1 antibody, was studied in detail. Free CrSUMO96 was purified by immunoprecipitation and identified by mass spectrometry analysis. A SUMO-conjugating enzyme (SCE) (E2, Ubc9) in C. reinhardtii was shown to be functional in an Escherichia coli-based in vivo chimeric SUMOylation system. Antibodies to CrSUMO96 recognized free and conjugated forms of CrSUMO96 in Western blot analysis of whole-cell extracts and nuclear localized SUMOylated proteins with in situ immunofluorescence. Western blot analysis showed a marked increase in SUMO conjugated proteins when the cells were subjected to environmental stresses, such as heat shock and osmotic stress. Related analyses revealed multiple potential ubiquitin genes along with two Rub1 genes and one Ufm1 gene in the C. reinhardtii genome.  相似文献   

7.
8.
The Chlamydomonas reinhardtii strain Tx11-8 is a transgenic alga that bears the nitrate reductase gene (Nia1) under control of the CabII-1 gene promoter (CabII-1-Nia1). Approximately nine copies of the chimeric CabII-1-Nia1 gene were found to be integrated in this strain and to confer a phenotype of chlorate sensitivity in the presence of ammonium. We have used this strain for the isolation of spontaneous chlorate resistant mutants in the presence of ammonium that were found to be defective at loci involved in MoCo metabolism and light-dependent growth in nitrate media. Of a total of 45 mutant strains analyzed first, 44 were affected in the MoCo activity (16 Nit, unable to grow in nitrate, and 28 Nit+, able to grow in nitrate). All the Nit strains lacked MoCo activity. Diploid complementation of Nit, MoCo strains with C. reinhardtii MoCo mutants and genetic analysis indicated that some strains were defective at known loci for MoCo biosynthesis, while three strains were defective at two new loci, hereafter named Nit10 and Nit11. The other 28 Nit+ strains showed almost undetectable MoCo activity or activity was below 20% of the parental strain. Second, only one strain (named 23c+) showed MoCo and NR activities comparable to those in the parental strain. Strain 23c+ seems to be affected in a locus, Nit12, required for growth in nitrate under continuous light. It is proposed that this locus is required for nitrate/chlorate transport activity. In this work, mechanisms of chlorate toxicity are reviewed in the light of our results.  相似文献   

9.
The blue-light requirement for the biosynthesis of nitrite reductase and an NO2 transport system was studied in Chlamydomonas reinhardtii mutant S10. The only oxidized nitrogen species that could be taken up by this mutant was NO2, due to the presence of NO2 transport systems and the absence of high-affinity NO3 transporters. NH4+-grown cells required illumination with blue light to recover the ability to take up NO2 when resuspended in an NO2-containing NH4+-deprived medium. This blue-light- dependent recovery, which took 1 h, could be suppressed by cycloheximide, indicating that protein biosynthesis was involved. The biosynthesis of nitrite reductase took place in cell suspensions irradiated with red light, even in the absence of NO2, thus suggesting that the process requiring blue light was the biosynthesis of an NO2 transport system. Nitrite reductase-containing cells (pre-irradiated with red light) took 1 h to start consuming NO2 when they were additionally irradiated with blue light in the presence of this anion, and this process was also cycloheximide-sensitive. The NO2 transport system operated either under red plus blue light or red light only. Thus, in C. reinhardtii mutant S10 cells, blue light was only required for the biosynthesis of an NO2 transport system and not for its activity.  相似文献   

10.
Nitrate and ammonium constitute primary inorganic nitrogen sources that can be incorporated into carbon skeletons in photosynthetic eukaryotes. In Chlamydomonas, previous studies and the present one showed that the mitochondrial AOX is up-regulated in nitrate-grown cells in comparison with ammonium-grown cells. In this work, we have performed a comparative proteomic analysis of the soluble mitochondrial proteome of Chlamydomonas cells growth either on nitrate or ammonium. Our results highlight important proteomics modifications mostly related to primary metabolism in cells grown on nitrate. We could note an up-regulation of some TCA cycle enzymes and a down-regulation of cytochrome c1 together with an up-regulation of l-arginine and purine catabolism enzymes and of ROS scavenging systems. Hence, in nitrate-grown cells, AOX may play a dual role: (1) lowering the ubiquinone pool reduction level and (2) permitting the export of mitochondrial reducing power under the form of malate for nitrate and nitrite reduction. This role of AOX in the mitochondrial plasticity makes logical the localization of Aox1 in a nitrate assimilation gene cluster.  相似文献   

11.
The aim of the present work was to study the possible role of the UVS11 gene of the alga Chlamydomonas reinhardtii, in regulation of the cell cycle. To characterize the defect of a uvs11 mutant in respect to DNA damage-dependent cell cycle arrest, we examined first the influence of the tubulin-destabilizing drug methyl benzimidazole-2-yl-carbamate (MBC) on inhibition of mitosis in response to UV 254nm. Then the growth and reproductive processes and activity of cyclin-dependent kinases (CDK)-like kinases during the cell cycle of C. reinhardtii were investigated. In both, the wild type and the uvs11 mutant strain were compared under standard conditions and after DNA damage caused by UV 254nm. We assume the green alga C. reinhardtii possesses control mechanisms allowing to stop the cell cycle progression before mitosis in response to DNA damage. The results indicate that the uvs11 mutant is not able to stop the cell cycle after UV irradiation. We suggest that a product of the UVS11 gene affects cell response to DNA damage and influences a decrease in histone H1 kinase activity.  相似文献   

12.
13.
14.
The sequence and organization of the Chlamydomonas reinhardtii genes encoding cytochrome c(1) ( Cyc1) and the Rieske-type iron-sulfur protein ( Isp), two key nucleus-encoded subunits of the mitochondrial cytochrome bc(1) complex, are presented. Southern hybridization analysis indicates that both Cyc1 and Isp are present as single-copy genes in C. reinhardtii. The Cyc1 gene spans 6404 bp and contains six introns, ranging from 178 to 1134 bp in size. The Isp gene spans 1238 bp and contains four smaller introns, ranging in length from 83 to 167 bp. In both genes, the intron/exon junctions follow the GT/AG rule. Internal conserved sequences were identified in only some of the introns in the Cyc1 gene. The levels of expression of Isp and Cyc1 genes are comparable in wild-type C. reinhardtii cells and in a mutant strain carrying a deletion in the mitochondrial gene for cytochrome b (dum-1). Nevertheless, no accumulation of the nucleus-encoded cytochrome c(1) or of core proteins I and II was observed in the membranes of the respiratory mutant. These data show that, in the green alga C. reinhardtii, the subunits of the cytochrome bc(1) complex fail to assemble properly in the absence of cytochrome b.  相似文献   

15.
Methylammonium cannot be used as a nitrogen source by the green alga Chlamydomonas reinhardii and, like ammonia, caused the repression of nitrate reductase without affecting the photosynthetic activity. Glutamine synthetase catalyzed the conversion ofmethylammonium to a single product, identified as γ-N-methylglutamine, which accumulated in the cells. Derepression of nitrate reductase was accompanied by a decrease in the intracellular concentration of methylammonium and a concomitant accumulation of γ-N-methylglutamine inside the cells. These facts strongly suggest that ammonium (methylammonium) per se, and not a product of its metabolism, is the co-repressor of nitrate reductase in C. reinhardii  相似文献   

16.
17.
Putative high-affinity nitrate (NO3-) transporter genes, designated Nrt2;1At and Nrt2;2At, were isolated from Arabidopsis thaliana by RT-PCR using degenerate primers. The genes shared 86% and 89% identity at the amino acid and nucleotide levels, respectively, while their proteins shared 30-73% identities with other eukaryotic high-affinity NO3- transporters. Both genes were induced by NO3-, but Nrt2;1At gene expression was not apparent in 2- and 5-day-old plants. By 10 days, and thereafter, Nrt2;1At gene expression in roots was substantially higher than for the Nrt2;2At gene. Root Nrt2;1At expression levels were strongly correlated with inducible high-affinity 13NO3- influx into intact roots under several treatment conditions. The use of inhibitors of N assimilation indicated that downregulation of Nrt2;1At expression was mediated by NH4+, gln and other amino acids.  相似文献   

18.
19.
This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.  相似文献   

20.
The unicellular green alga Chlamydomonas reinhardtii can acclimate to a wide range of CO(2) concentrations through the regulation of a CO(2)-concentrating mechanism (CCM). By proteomic analysis, here we identified the proteins which were specifically accumulated under high-CO(2) conditions in a cell wall-less strain of C. reinhardtii which release their extracellular matrix into the medium. When the CO(2) concentration was elevated from the ambient air level to 3% during culture, the algal growth rate increased 1.5-fold and the composition of extracellular proteins, but not intracellular soluble and insoluble proteins, clearly changed. Proteomic analysis data showed that the levels of 22 of 129 extracellular proteins increased for 1 and 3 d and such multiple high-CO(2)-inducible proteins include gametogenesis-related proteins and hydroxyproline-rich glycoproteins. However, we could not prove the induction of gametogenesis under high-CO(2) conditions, suggesting that the inductive signal might be incomplete, not strong enough or that only high-CO(2) conditions might be not sufficient for the cell stage to proceed to the formation of sexually active gametes. However, these gametogenesis-related proteins and/or hydroxyproline-rich glycoproteins may have novel roles outside the cell under high-CO(2) conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号