首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Interaction of the Escherichia coli trp repressor with the promoter-operator regions of the trp, aroH and trpR operons was studied in vivo and in vitro. The three operators have similar, but non-identical, sequences; each operator is located in a different segment of its respective promoter. In vivo repression of the three operons was measured using single-copy gene fusions to lacZ. The extent of repression varied from 300-fold for the trp operon, to sixfold for the aroH operon and threefold for the trpR operon. To determine whether differential binding of repressor to the three operators was responsible for the differences in repression observed in vivo, three in vitro binding assays were employed. Restriction-site protection, gel retardation and DNase footprinting analyses revealed that repressor binds to the three operators with almost equal affinity. It was also shown in an in vivo competition assay that repressor binds approximately equally well to each of the three operators. It is proposed that the differential regulation observed in vivo may be due to the different relative locations of the three operators within their respective promoters.  相似文献   

4.
Mutant strains of Escherichia coli K-12 have been isolated in which the synthesis of 3-deoxy-d-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase (trp) is partially constitutive. The mutation causing derepression is closely linked to aroH [the structural gene for DAHP synthetase (trp)] and occurs in a locus designated aroJ. The aroJ mutation is not recessive in an aroJ(+)/aroJ(-) diploid strain, as the synthesis of DAHP synthetase (trp) is still derepressed in this strain. On the basis of its close linkage to aroH and its continued expression in an aroJ(+)/aroJ(-) diploid, it is postulated that aroJ is an operator locus controlling the expression of the structural gene aroH. In support of this conclusion, the synthesis of anthranilate synthetase is still normally repressible in aroJ(-) strains, whereas, in trpR(-) strains, both DAHP synthetase (trp) and anthranilate synthetase are synthesized constitutively. The synthesis of DAHP synthetase (trp) remains repressible in an operator-constitutive mutant of the tryptophan operon. In two trpS mutants which possess defective tryptophanyl transfer ribonucleic acid synthetase enzymes, neither DAHP synthetase (trp) nor anthranilate synthetase derepress under conditions in which the defective synthetase causes a decrease in growth rate. On the other hand, an effect of the trpS mutant alleles on the level of anthranilate synthetase has been observed in strains which are derepressed for the synthesis of this enzyme, because of a mutation in the gene trpR. Possible explanations for this effect are presented.  相似文献   

5.
Repression of aromatic amino acid biosynthesis in Escherichia coli K-12   总被引:24,自引:20,他引:4  
Mutants of Escherichia coli K-12 were isolated in which the synthesis of the following, normally repressible enzymes of aromatic biosynthesis was constitutive: 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetases (phe and tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. In the wild type, DAHP synthetase (phe) was multivalently repressed by phenylalanine plus tryptophan, whereas DAHP synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A were repressed by tyrosine. DAHP synthetase (tyr) and chorismate mutase T-prephenate dehydrogenase were also repressed by phenylalanine in high concentration (10(-3)m). Besides the constitutive synthesis of DAHP synthetase (phe), the mutants had the same phenotype as strains mutated in the tyrosine regulatory gene tyrR. The mutations causing this phenotype were cotransducible with trpA, trpE, cysB, and pyrF and mapped in the same region as tyrR at approximately 26 min on the chromosome. It is concluded that these mutations may be alleles of the tyrR gene and that synthesis of the enzymes listed above is controlled by this gene. Chorismate mutase P and prephenate dehydratase activities which are carried on a single protein were repressed by phenylalanine alone and were not controlled by tyrR. Formation of this protein is presumed to be controlled by a separate, unknown regulator gene. The heat-stable phenylalanine transaminase and two enzymes of the common aromatic pathway, 5-dehydroquinate synthetase and 5-dehydroquinase, were not repressible under the conditions studied and were not affected by tyrR. DAHP synthetase (trp) and tryptophan synthetase were repressed by tryptophan and have previously been shown to be under the control of the trpR regulatory gene. These enzymes also were unaffected by tyrR.  相似文献   

6.
An expression system was developed for measuring in vivo promoter strength at the single copy level and this system was used to compare the trp, aroH and trpR promoters. This system employs trpE enzyme activity as a measure of promoter strength and lacZ expression for internal copy number reference. Promoter-containing fragments are inserted into a cloning vector and subsequently recombined on to phage lambda by genetic exchange. Single lysogens are then prepared and used in promoter-strength analyses. The strength of several promoters was determined using this system. Among the promoters tested, the Escherichia coli trpEDCBA promoter was the strongest; it was four times more active than the lacUV5 promoter and about ten times stronger than the trpR and aroH promoters. To validate measurement of trpE enzyme activity as an indicator of promoter strength, trpE enzyme activity was compared with the level of trpE mRNA. There was excellent correspondence between the two, suggesting that with this system trpE enzyme activity accurately reflects promoter strength. We also examined a homologous promoter-strength measuring system in which the promoter-cloning plasmid lacked a 104 base-pair DNA spacer that was present immediately downstream from the promoter-cloning site in our preferred system. We found that the spacer was essential; the transcribed region accompanying a cloned promoter apparently affected trpE translational efficiency and/or trpE mRNA stability.  相似文献   

7.
8.
The Escherichia coli Trp repressor binds to promoters of very different sequence and intrinsic activity. Its mode of binding to trp operator DNA has been studied extensively yet remains highly controversial. In order to examine the selectivity of the protein for DNA, we have used electromobility shift assays (EMSAs) to study its binding to synthetic DNA containing the core sequences of each of its five operators and of operator variants. Our results for DNA containing sequences of two of the operators, trpEDCBA and aroH are similar to those of previous studies. Up to three bands of lower mobility than the free DNA are obtained which are assigned to complexes of stoichiometry 1 : 1, 2 : 1 and 3 : 1 Trp repressor dimer to DNA. The mtr and aroL operators have not been studied previously in vitro. For DNA containing these sequences, we observe predominantly one retarded band in EMSA with mobility corresponding to 2 : 1 complexes. We have also obtained retardation of DNA containing the trpR operator sequence, which has only been previously obtained with super-repressor Trp mutants. This gives bands with mobilities corresponding to 1 : 1 and 2 : 1 complexes. In contrast, DNA containing containing a symmetrized trpR operator sequence, trpRs, gives a single retarded band with mobility corresponding solely to a 1 : 1 protein dimer-DNA complex. Using trpR operator variants, we show that a change in a single base pair in the core 20 base pairs can alter the number of retarded DNA bands in EMSA and the length of the DNase I footprint observed. This shows that the binding of the second dimer is sequence selective. We propose that the broad selectivity of Trp repressor coupled to tandem 2 : 1 binding, which we have observed with all five operator sequences, enables the Trp repressor to bind to a limited number of sites with diverse sequences. This allows it to co-ordinately control promoters of different intrinsic strength. This mechanism may be of importance in a number of promoters that bind multiple effector molecules.  相似文献   

9.
Autoregulation of the tyrR gene.   总被引:12,自引:8,他引:4       下载免费PDF全文
  相似文献   

10.
Regulatory mutants of the aroF-tyrA operon of Escherichia coli K-12.   总被引:11,自引:10,他引:1       下载免费PDF全文
The regulatory region of the aroF-tyrA operon was fused to the chloramphenicol acetyltransferase (cat) gene on a plasmid vector. Expression of the cat gene was subject to repression by tyrR+. This fusion was used to isolate regulatory mutants with increased expression of the cat gene in which repression by tyrR+ was affected. Nucleotide sequencing of these mutants has led to the identification of three sites involved in the repression of aroF by tyrR+. The existence of a functional promoter divergently transcribing from the aroF regulatory region was also demonstrated by using the cat fusion vector. The expression of this promoter is also regulated by tyrR+.  相似文献   

11.
A spontaneous amber tyrR mutant has been isolated in which constitutive synthesis of 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetase (tyr) and DAHP synthetase (phe) is suppressible by supC(-), supD(-), supF(-) and supU(-). This finding suggests the tyrR gene product is a protein. Derepression of DAHP synthetase (phe) in this and in seven other spontaneous tyrR mutants and in four Mu-1-induced tyrR mutants provides further evidence for the involvement of the tyrR gene product in phenylalanine biosynthesis. Evidence that the tyrR product is a component of repressor, rather than an enzyme involved in its synthesis or modification, comes from a study of a temperature-sensitive tyrR mutant. This mutant is of the thermolabile type, since derepression occurs rapidly and in the presence and absence of growth.  相似文献   

12.
Site-directed mutagenesis has been used to further characterize amino acid residues necessary for the activation of gene expression by the TyrR protein. Amino acid substitutions have been made at positions 2, 4, 5, 6, 7, 8, 9, 10, and 16. TyrR mutants with amino acid substitutions V-5-->P (VP5), VF5, CS7, CR7, DR9, RI10, RS10, and ER16 show no or very little activation of expression of either mtr or tyrP. In each case, however, the ability to repress aroF is unaltered. Amino acid substitutions at positions 4, 6, and 8 have no effect on activation. Small internal deletions of residues 10 to 19, 20 to 29, or 30 to 39 also destroy phenylalanine- or tyrosine-mediated activation of mtr and tyrP. In these mutants repression of aroF is also unaltered. In activation-defective tyrR mutants, expression of mtr is repressed in the presence of tyrosine. This tyrosine-mediated repression is trpR dependent and implies an interaction between TrpR and TyrR proteins in the presence of tyrosine.  相似文献   

13.
大肠杆菌tyrR基因剔除及其对苯丙氨酸生物合成的影响   总被引:1,自引:0,他引:1  
TyrR是大肠杆菌芳香族氨基酸生物合成和运输途径中的一种全局性调控蛋白质。采用双交换同源重组的方法定位突变大肠杆菌染色体tyrR基因 ,在该基因中插入带有卡那霉素抗性基因的DNA片段 ,使之失活 ,实现基因剔除。经PCR、DNA测序、lacZ报告基因等多种方法证实了基因剔除的可靠性。tyrR基因剔除后 ,大肠杆菌芳香族氨基酸生物合成中受TyrR蛋白调控的关键酶的酶活力有所提高 :3 脱氧 2 阿拉伯庚酮糖 7 磷酸合成酶(DAHPS ,由aroG编码 )酶活力提高了 1.0 8倍 ,转氨酶 (AT ,由tyrB编码 )酶活力提高了 2 .70倍 ;突变菌株发酵生产苯丙氨酸的能力提高了 1.5 9倍 ;同时 ,与芳香族氨基酸运输相关的通透酶基因aroP(P)的阻遏被解除 ,细胞运输芳香族氨基酸的能力提高了 70 .2 %。  相似文献   

14.
Tryptophan repressor (trpR) gene lacks various amino acid codons. To establish these codons in the trpR gene, we created the mutants by site-directed mutagenesis in the trpR gene of pHK1 plasmid. The interested regions of trpR gene were amplified, cloned in pT7-5 plasmid and transformed in to the cells harboring pGP1-2 plasmid. These plasmid products were labeled with (35)S Met, and following sequencing we observed the presence of mutants for cysteine, glycine, serine and lysine in the trpR gene of E. coli. Therefore, using these approach mutants in various genes of E. coli could be established and used as a tool to study translational bypassing in trpR gene of E. coli.  相似文献   

15.
16.
17.
The transposon Tn10, coding for resistance to tetracycline, was inserted close to the tyrR+ gene at min 28 on the Escherichia coli chromosome. The homology between this transposon and a lambda (Tn10) phage was employed to direct integration of lambda close to tyrR+ with subsequent isolation of a lambda (Tn10) tyrR+ transducing phage. Results of restriction endonuclease analysis of the transducing phage are presented.  相似文献   

18.
Mutant strains of Escherichia coli have been isolated in which the synthesis of 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetase (phe) is derepressed, in addition to those enzymes of tyrosine biosynthesis previously shown to be controlled by the gene tyrR. The major enzyme of the terminal pathway of phenylalanine biosynthesis chorismate mutase-prephenate dehydratase is not derepressed in these strains. Genetic analysis of the mutants shows that the mutation or mutations causing derepression map close to previously reported tyrR mutations. A study of one of the mutations has shown it to be recessive to the wild-type allele in a diploid strain. It is proposed that the tyrR gene product is involved in the regulation of the synthesis of DAHP synthetase (phe) as well as the synthesis of DAHP synthetase (tyr), chorismate mutase-prephenate dehydrogenase, and transaminase A.  相似文献   

19.
The Escherichia coli K-12 regulator gene tyrR was cloned into the multicopy plasmid pBR322 from a lambda(Tn10)tyrR+ specialized transducing phage. Further subcloning localized the gene within a 2.1-kilobase region. Analysis of plasmid-coded proteins showed that the tyrR gene codes for a 63,000-dalton polypeptide.  相似文献   

20.
An investigation of repression in the trp system of Escherichia coli was undertaken using operon fusions and plasmids constructed via recombinant DNA technology. The promoters of the trp operon and the trpR gene were fused to lacZ, enabling the activity of these promoters to be evaluated under various conditions through measurements of beta-galactosidase production. In confirmation of earlier studies, the trpR gene was shown to be regulated autogenously. This control feature of the trp system was found to maintain intracellular Trp repressor protein at essentially invariant levels under most conditions studied. Increasing the trpR+ gene dosage did not significantly elevate Trp repressor protein levels, nor did the introduction of additional operator "sinks" result in significantly decreased levels of Trp repressor protein. Definite alterations in intracellular Trp repressor protein levels were achieved only by subverting the normal trpR regulatory elements. The placement of the lacUV5 or the lambda PL promoters upstream of the trpR gene resulted in significant increases in repression of the trp system. Substituting the primary trp promoter/operator for the native trpR promoter/operator resulted in an altered regulatory response of the trp system to tryptophan limitation or excess. The regulation of the trpR gene effectively imparts a broad range of expression to the trp operon in a manner finely attuned to fluctuations in intracellular tryptophan levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号