首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid procedure for preparing large quantities of purified erythrocyte Ca2+-transport ATPase is presented. The method involves: (1) fast preparation of calmodulin-deficient, essentially haemoglobin-free, erythrocyte membranes by molecular filtration using Pellicon filters; (2) solubilization of membrane proteins by deoxycholate; and (3) a batch procedure using calmodulin-Sepharose 4B gel for purification of Ca2+-transport ATPase.  相似文献   

2.
In this study the polymorphism of myofibrillar proteins and the Ca2+-uptake activity of sarcoplasmic reticulum were analysed in single fibres from human skeletal muscles. Two populations of histochemically identified type-I fibres were found differing in the number of light-chain isoforms of the constituent myosin, whereas the pattern of light chains of fast myosin of type-IIA and type-IIB fibres was indistinguishable. Regulatory proteins, troponin and tropomyosin, and other myofibrillar proteins, such as M- and C-proteins, showed specific isoforms in type-I and type-II fibres. Furthermore, tropomyosin presented different stoichiometries of the alpha- and beta-subunits between the two types of fibres. Sarcoplasmic-reticulum volume, as indicated by the maximum capacity for calcium oxalate accumulation, was almost identical in type-I and type-II fibres, whereas the rate of Ca2+ transport was twice as high in type-II as compared with type-I fibres. It is concluded that, in normal human muscle fibres, there is a tight segregation of fast and slow isoforms of myofibrillar proteins that is very well co-ordinated with the relaxing activity of the sarcoplasmic reticulum. These findings may thus represent a molecular correlation with the differences of the twitch-contraction time between fast and slow human motor units. This tight segregation is partially lost in the muscle fibres of elderly individuals.  相似文献   

3.
Inside-out vesicles of human erythrocytes took up Ca2+ against an electrochemical gradient. This Ca2+ uptake was dependent on ATP and was stimulated by calmodulin. Treatment of vesicles with 1 mM-EDTA exposed an apparent low-CA2+-affinity Ca2+-transport component with Kd of about 100 microM-Ca2+ or more. This was converted into a single high-Ca2+-affinity transport activity of Kd about 2.5 microM-Ca2+ in the presence of 2 micrograms of calmodulin/ml, showing that the decrease in transport activity after EDTA treatment was reversible. Vesicles not extracted with EDTA showed mainly apparent high-Ca2+-affinity kinetics even in the absence of added calmodulin. Trifluoperazine (30 microM) and calmodulin-binding protein (20 micrograms/ml) inhibited about 50% of the high-affinity Ca2+ uptake and (Ca2+ + Mg2+)-ATPase (Ca2+-activated, Mg2+-dependent ATPase) activity of these vesicles, indicating that the vesicles isolated by the procedure used retained some calmodulin from the erythrocytes. Comparison of Ca2+ transport and (Ca2+ + Mg2+)-ATPase activities in inside-out vesicles yielded a variable Ca2+/P1 stoichiometric ratio. At low free Ca2+ concentrations (below 20 micro-Ca2+), a Ca2+/P1 ration of about 2 was found, whereas at higher Ca2+ concentrations the stoichiometry was approx. 1. The stoichiometry was not significantly altered by calmodulin.  相似文献   

4.
The Ca2+-transport system of human erythrocyte membranes was solubilized by deoxycholate in the presence of the nonionic detergent Tween 20 and was purified by calmodulin affinity chromatography. The method yields a functional enzyme, which as compared with the erythrocyte membrane was purified 207-fold based on specific activity, and about 330-fold based on protein content. The activity of the isolated enzyme can be increased about 9-fold by the addition of calmodulin, resulting in a specific activity of 10.1 mumoles/mg . min at 37 degrees C. Triton X-100 and deoxycholate stimulate the calmodulin-deficient Ca2+-ATPase in a concentration dependent manner, which results in a loss of the calmodulin-sensitivity. The Ca2+-transport ATPase could be reconstituted after solubilization of the ATPase by deoxycholate and controlled dialysis near room temperature. The system was reconstituted to form membraneous vesicles capable of energized Ca2+ accumulation. The membrane vesicles showed a protein to lipid ratio (approx. 60% protein and 40% lipid) similar to that of the original erythrocyte membrane. The stimulation by calmodulin of the calmodulin-depleted membrane-bound and partially purified Ca2+-ATPase is strongly time dependent. At a Ca2+-concentration of 40 microM and low calmodulin concentrations, approx. 120 min are required to regain full activity. This time period is decreased to about 15 min in the presence of a high excess of calmodulin. Vice versa, at fixed concentrations of calmodulin, the time necessary for regain of full activity is decreased as the Ca2+ concentrations is increased. The dependence of the Ca2+-ATPase activity on the calmodulin concentration shows strong deviation from Michaelis-Menten kinetics at Ca2+ concentrations below (4--10 microM) and above (200 microM) the optimum concentration of 40 microM. Mathematical analysis of the results at 200 microM Ca2+ leads to the assumption that 4 calmodulin molecules interact with one oligomer of Ca2+-ATPase consisting of 4 identical subunits.  相似文献   

5.
6.
We have previously reported that rat parotid gland basolateral plasma membrane vesicles (BLMV) have a relatively high affinity Ca2+ transport pathway and an unsaturable Ca2+ flux component (Lockwich et al., 1994. J. Membrane Biol. 141:289–296). In this study, we have solubilized BLMV with octylglucoside (1.5%) and have reconstituted the solubilized proteins into proteoliposomes (PrL) composed of E. coli bulk phospholipids, by using a detergent dilution method. PrL exhibited 3–5-fold higher 45Ca2+ influx than control liposomes (without protein). Ca2+ uptake into PrL was dependent on the [protein] in PrL and steady state [Ca2+] in PrL was in equilibrium with external [Ca2+]. These data demonstrate that a passive, protein-mediated Ca2+ transport has been reconstituted from BLMV into PrL. 45Ca2+ influx into liposomes did not saturate with increasing [Ca2+] in the assay medium. In contrast, PrL displayed saturable 45Ca2+ influx and exhibited a single Ca2+ flux component with an apparent K ca=242 ± 50.9 m and V max=13.5 ± 1.14 nmoles Ca2+/mg protein/ minute. The K ca of Ca2+-transport in PrL was similar to that of the high affinity Ca2+ influx component in BLMV while the V max was about 4-fold higher. The unsaturable Ca2+ flux component was not detected in PrL. 45Ca2+ influx in PrL was inhibited by divalent cations in the order of efficacy, Zn2+>Mn2+>Co2+=Ni2+, and appeared to be more sensitive to lower concentrations of Zn2+ than in BLMV. Consistent with our observations with BLMV, the carboxyl group reagent N,N-dicyclohexylcarbodiimide (DCCD) inhibited the reconstituted Ca2+ transport in PrL. Importantly, in both BLMV and PrL, DCCD induced a 40–50% decrease in V max of Ca2+ transport without an alteration in K ca. These data strongly suggest that the high affinity, passive Ca2+ transport pathway present in BLMV has been functionally reconstituted into PrL. We suggest that this approach provides a useful experimental system towards isolation of the protein(s) involved in mediating Ca2+ influx in the rat parotid gland basolateral plasma membrane.We thank Dr. Bruce Baum for his constant support and encouragement. We also thank Ms. Grace Park and all our colleagues for their assistance during the course of this work.  相似文献   

7.
8.
The influence of emotional-pain stress on the properties of the sarcoplasmic reticulum Ca2+-transporting system of the rat heart muscle was studied. The decrease of the Ca2+-dependent component of the Ca2+, Mg2+-ATPase activity, Ca2+-binding capacity and the rate of Ca2+-transport was found in the animals after stress. These alterations in the Ca2+-transporting system were caused by lipid peroxidation and could be prevented by the antioxidant ionol.  相似文献   

9.
(CaMg)ATPase [(Ca2+ + Mg2+)-dependent ATPase] was partially purified from a microsomal fraction of the smooth muscle of the pig stomach (antrum). Membranes were solubilized with deoxycholate, followed by removal of the detergent by dialysis. The purified (CaMg)ATPase has a specific activity (at 37 degrees C) of 157 +/- 12.1 (7)nmol.min-1.mg-1 of protein, and it is stimulated by calmodulin to 255 +/- 20.9 (7)nmol.min.mg-1. This purification of the (CaMg)ATPase resulted in an increase of the specific activity by approx. 18-fold and in a recovery of the total enzyme activity of 55% compared with the microsomal fraction. The partially purified (CaMg)ATPase still contains some Mg2+-and (Na+ + K+)-dependent ATPase activities, but their specific activities are increased relatively less than that of the (CaMg)ATPase. The ratios of the (CaMg)ATPase to Mg2+- and (Na+ + K+)-dependent ATPase activities increase from respectively 0.14 and 0.81 in the crude microsomal fraction to 1.39 and 9.07 in the purified preparation. During removal of the deoxycholate by dialysis, vesicles were reconstituted which were capable of ATP-dependent Ca2+ transport.  相似文献   

10.
An Na+-stimulated Mg2+-transport system in human red blood cells   总被引:5,自引:0,他引:5  
The initial rate of net Mg2+ efflux was measured in human red blood cells by atomic absorption. In fresh erythrocytes incubated in Na+,K+-Ringer's medium this rate was 7.3 +/- 2.8 mumol/l cells per h (mean +/- S.D. of 14 subjects) with an energy of activation of 13 200 cal/mol. Cells with total Mg2+ contents ([ Mg]i) ranging from 1.8 to 24 mmol/l cells were prepared by using a modified p-chloromercuribenzenesulphonate method. Mg2+ efflux was strongly stimulated by increases in [Mg]i and in external Na+ concentrations ([ Na]o). A kinetic analysis of Mg2+ efflux as a function of [Mg]i and [Na]o revealed the existence of two components: an Na+-stimulated Mg2+ efflux, which exhibited a Michaelian-like dependence of free internal Mg2+ content (apparent dissociation constant = 2.6 +/- 1.4 mmol/l cells; mean +/- S.D. of six subjects) and on external Na+ concentration (apparent dissociation constant = 20.5 +/- 1.9 mM; mean +/- S.D. of four subjects) and a variable maximal rate ranging from 35 to 370 mumol/l cells per h, and an Na+-independent Mg2+ efflux, which showed a linear dependence on internal Mg2+ content with a rate constant of (6.6 +/- 0.7) X 10(-3) h-1. Fluxes catalyzed by the Na+-stimulated Mg2+ carrier were partially dependent on the ATP content of the cells and completely inhibited by quinidine (IC50 = 50 microM) and by Mn2+ (IC50 = 0.5-1.0 mM).  相似文献   

11.
Control and cholesterol-depleted human erythrocytes were loaded with permeant Ca2+ chelators (Benz2-AM or Quin2-AM) in order to increase their exchangeable Ca2+ pool and to measure both Ca2+ fluxes and [Ca]i (free cytoplasmic calcium concentration). The fluxes were independent of the concentration and of the nature of the intracellular chelator. The ATP content was not decreased by more than 50% under our experimental conditions. Cholesterol depletion (up to 28%) induced a decrease in both Ca2+ fluxes and [Ca]i which was proportional to the extent of the depletion. It is shown that cholesterol depletion primarily altered the properties of the system responsible for Ca2+ entry causing a diminution of the [Ca]i. This, in turn, induced a diminution of the activity of the Ca2+ pump without affecting the properties of this pump.  相似文献   

12.
We report here the use of the fluorescent Ca2+-chelator fura-2 to directly measure free Ca2+ concentration within intact human erythrocytes and the influence of viscosity on the fluorescence of this probe. The bright fluorescence of fura-2 has permitted the use of low concentrations of indicator and cells, thus minimizing the screening effect and the intrinsic fluorescence of haemoglobin. Erythrocytes (10(8) cells/ml) were loaded with 0.5 microM fura-2AM then diluted at 10(7) cells per ml for measurements. The extracellular signal was suppressed by addition of manganese ions just before recording spectra. Under these conditions, a blood sample of 100 microliter was sufficient for analysis. To study the influence of viscosity on fura-2 fluorescence, gelatin and polyvinylpyrrolidone at various concentrations were added to a physiological buffer to perform fura-2-Ca fluorescence standard curves. Fluorescence intensities and the apparent affinity constant for Ca2+ were modified by viscosity. When intra-erythrocytic viscosity was simulated with 21 g/l polyvinylpyrrolidone to obtain a mean viscosity of 14 mPa.s similar to that observed in human erythrocytes, the mean value of free Ca2+ concentration measured in erythrocytes from healthy subjects was 78 +/- 16 nM (mean +/- S.D., n = 29).  相似文献   

13.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37°C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 ± 0.5 mM (± S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane.  相似文献   

14.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37 degrees C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 +/- 0.5 mM (+/- S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane.  相似文献   

15.
The effect of antioxidant--alpha-tocopherol--on Ca2+-transporting system in sarcoplasmic reticulum (SR) of the rabbit skeletal muscles was studied in hypercholesterolemia (HC). alpha-tocopherol administration to animals with HC produced a break on the curve of temperature dependence of Ca-ATPase activity at about 20 degrees C, that disappeared in HC, increased the rate of "rapid" SH-group binding by thiol reagents, and normalized the level of unsaturated fatty acids in SR membranes without altering phospholipid content. It is suggested that the damage of Ca-ATPase in HC is mainly due to activation of lipid peroxidation.  相似文献   

16.
From sea urchin eggs as well as from mammalian cells a Ca2+-transporting system is described in its properties. One of its main components is the "mitotic" Ca2+-ATPase. If its activity is studied during the cell cycle of fertilized sea urchin eggs, fluctuations of the Ca2+-uptake capacity are found with a maximum in every cell cycle at mitosis. Additionally, only in the first cycle after fertilization, another activity increase occurs at the time of spermaster formation. This system, then, seems to qualify for one of the main regulators of the mitotic process.  相似文献   

17.
The mechanism of inhibition of Ca2+-transport activity of rabbit sarcoplasmic reticulum Ca 2+-ATPase (SERCA) by anisodamine (a drug isolated from a medicinal herb Hyoscyamuns niger L) was investigated by using ANS (1-anilino-8-naphthalenesulfonate) fluorescence probe, intrinsic fluorescence quenching and Ca 2+-transport activity assays. The number of ANS binding sites for apo Ca2+-ATPase was determined as 8, using a multiple-identical binding site model. Both anisodamine and Ca2+ at millimolar level enhanced the ANS binding fluorescence intensities. Only anisodamine increased the number of ANS molecules bound by SERCA from 8 to 14. The dissociation constants of ANS to the enzyme without any ligand, with 30 mM anisodamine and with 15 mM Ca 2 were found to be 53.0 microM, 85.0 microM and 50.1 microM, respectively. Both anisodamine and Ca2+ enhanced the ANS binding fluorescenc with apparent dissociation constants of 7.6 mM and 2.3 mM, respectively, at a constant concentration of the enzyme. Binding of anisodamine significantly decreased the binding capacity of Ca2+ with the dissociation constant of 9.5 mM, but binding of Ca2+ had no obvious effect on binding of anisodamine. Intrinsic fluorescence quenching and Ca2+-transport activity assays gave the dissociation constants of anisodamine to SERCA as 9.7 and 5.4 mM, respectively, which were consistent with those obtained from ANS-binding fluorescence changes during titration of SERCA with anisodamine and anisodamine + 15 mM Ca2+, respectively. The results suggest that anisodamine regulates Ca2+-transport activity of the enzyme, by stabilizing the trans-membrane domain in an expanded, inactive conformation, at least at its annular ring region.  相似文献   

18.
1. Both the Ca(2+)-pump ATPase and the polyphosphoinositide phosphodiesterase of the erythrocyte membrane can, when assayed under appropriate conditions, be activated by Ca(2+) in the micromolar range. We have therefore compared the mechanisms and affinities for Ca(2+) activation of the two enzymes in human erythrocyte membranes, to see whether the polyphosphoinositide phosphodiesterase would be active in normal healthy erythrocytes. 2. At physiological ionic strength and in the presence of calmodulin, the Ca(2+)-pump ATPase was activated by Ca(2+) in a highly co-operative manner, with half-maximal activation occurring at about 0.3mum-Ca(2+). At an optimal Ca(2+) concentration, calmodulin stimulated the Ca(2+)-sensitive ATPase activity about 10-fold. 3. Ca(2+) activated the polyphosphoinositide phosphodiesterase in a non-co-operative manner. The Ca(2+) requirements for breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were identical, which supports our previous conclusion that Ca(2+) activates a single polyphosphoinositide phosphodiesterase that degrades both lipids with equal facility. Added calmodulin did not affect the activity of the polyphosphoinositide phosphodiesterase. 4. At low ionic strength in the absence of Mg(2+), half-maximal activation of the phosphodiesterase was at about 3mum-Ca(2+). The presence of 1mm-Mg(2+) shifted the Ca(2+) activation curve to the right, as did elevation of the ionic strength. When the Ca(2+)-pump ATPase and the polyphosphoinositide phosphodiesterase were assayed in the same incubations and under conditions of intracellular ionic strength and Mg(2+) concentration, the ATPase was fully activated at 3mum-Ca(2+), whereas no polyphosphoinositide phosphodiesterase activity was detected below 100mum-Ca(2+). 5. The Ca(2+)-pump ATPase of the erythrocyte membrane normally maintains the Ca(2+) concentration of healthy erythrocytes below approx. 0.1mum. It therefore seems unlikely that the polyphosphoinositide phosphodiesterase of the erythrocyte membrane ever expresses its activity in a healthy erythrocyte.  相似文献   

19.
1. The Ca2+-dependency of K+ efflux, microvesiculation and breakdown of polyphosphoinositides and of ankyrin have been measured in intact human erythrocytes exposed to ionophore A23187 and HEDTA [N'-(2-hydroxyethyl)ethylenediamine NNN'-triacetate]-Ca2+ buffers. Half-maximal responses were observed at pCa values of 6.4, 4.1, 5.0 and 4.8 respectively. 2. The Ca2+ dependencies of K+ efflux and breakdown of polyphosphoinositides and ankyrin measured in erythrocyte ghosts without addition of ionophore showed almost identical values with those seen in whole cells treated with ionophore. 3. We conclude that ionophore A23187 is able to cause rapid equilibration of extracellular and intracellular [Ca2+] in intact cells and that in the presence of a suitable Ca2+ buffer, ionophore A23187 can be used to precisely fix the intracellular concentration of Ca2+ in erythrocytes. 4. The relatively high concentration of Ca2+ required to produce microvesiculation in intact cells may indicate that microvesiculation could be at least partly dependent on a direct interaction of Ca2+ with phospholipid. 5. Results obtained with Sr2+ paralleled those with Ca2+, although higher Sr2+ concentrations were required to achieve the same effects as Ca2+. Mg2+ produced none of the changes seen with Ca2+ or Sr2+.  相似文献   

20.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号