首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Freezing denaturation of ovalbumin at acid pH   总被引:1,自引:0,他引:1  
The effects of rapid freezing and thawing at acid pH on the physiochemical properties of ovalbumin were examined. At low pH (around 2), UV difference spectra showed microenvironmental changes around the aromatic amino acid residues; elution curves by gel permeation chromatography showed decreasing numbers of monomers after neutralization. These changes depended on the incubation temperature (between -196 and -10 degrees C) and the protein concentration (0.5-10 mg/ml), and a low concentration of ovalbumin incubated at around -40 degrees C suffered the most damage to its conformation. With freezing and then incubation at -40 degrees C, three of the four sulfhydryl groups in the ovalbumin molecule reacted with 2,2'-dithiodipyridine. The CD spectra showed these changes in the secondary structure, but they were smaller than those when guanidine hydrochloride was used for denaturation. Supercooling at -15 degrees C or freezing at -196 degrees C had little or no effect on the conformation of the ovalbumin molecule. Thus, irreversible conformational changes of ovalbumin were caused under the critical freezing condition at an acid pH. These changes arose from partial denaturation and resembled those with thermal denaturation of ovalbumin at neutral pH.  相似文献   

2.
The pH dependence of the reversible guanidine hydrochloride denaturation of the major fraction of ovalbumin (ovalbumin A1) was studied by a viscometric method in the pH range 1-7, at 25 degrees C and at six different denaturant concentrations (1.5-2.6 M). At any denaturant concentrationa reduction in pH favoured the transition from the native to the denatured state. The latter was essentially 'structureless', as revealed by the fact that the reduced viscosity of the acid and guanidine hydrochloride denatured state of ovalbumin A1 (obtained at different denaturant concentrations in acidic solutions) was measured (at a protein concentration of 3.8 mg/ml) to be 29.2 ml/g which is identical to that found in 6 M guanidine hydrochloride wherein the protein behaves as a cross-linked random coil. A quantitative analysis of the results on the pH dependence of the equilibrium constant for the denaturation process showed that on denaturation the intrinsic pK of two carboxyl groups in ovalbumin A1 went up from 3.1 in the native state to 4.4 in the denatured state of the protein.  相似文献   

3.
The ultrasonic velocity, density and viscosity of two egg proteins, ovalbumin and ovotransferrin in phosphate buffer have been studied at the physiological pH values. The thermodynamic functions for unfolding, ellipticity, surface amino acid residues and compressibility have been obtained for thermal and chemical denaturation in these food proteins. The computed values of Huggin's constant and shape factor, at a fixed ionic strength 0.16 M are found to be in agreement with the reported values for globular proteins. The slow increase in free-energy of unfolding with temperature at a fixed pH 7 suggests uncoiling and in turn, disappearance of biological activity. It has been observed that the effects of temperature and chemical denaturant on the native protein may give rise to different conformational states. In the presence of urea and sodium dodecyl sulphate (SDS), the proteins gave the excessively denatured states at 25 degrees C and pH 7, in comparison to the thermal denatured state. The positive values of partial adiabatic compressibility (see symbol in text) beta s over the temperature range 45-75 degrees C suggest the possibility of large internal flexibility in ovotransferrin than in ovalbumin.  相似文献   

4.
The thermal denaturation, aggregation, and degradation of hen egg white ovalbumin dissolved in distilled and deionized water (60 mg/ml, pH 7.5) was investigated by differential scanning calorimetry (DSC), polyacrylamide gel electrophoresis (PAGE), and viscosity measurement. Two independent endothermic peaks were observed up to 180 degrees C by the DSC analysis. The first peak appeared at around 80 degrees C, corresponding to the denaturation temperature of ovalbumin. The second peak occurred around 140 degrees C due to the degradation of protein molecules as judged from the analysis by SDS-PAGE. The viscosity of the ovalbumin solution increased dramatically above 88 degrees C and maintained almost the same value up until heating to 140 degrees C. The increase in viscosity after heating to 88 degrees C was due to the denaturation and subsequent aggregation of ovalbumin molecules as observed by SDS-PAGE. The decrease in viscosity of the samples heated above 150 degrees C appears to have been the result of degradation of the ovalbumin molecules.  相似文献   

5.
The thermal unfolding transition of equine beta-lactoglobulin (ELG) was investigated by circular dichroism (CD) over a temperature range of -15 degrees C to 85 degrees C. In the presence of 2 M urea, a cooperative unfolding transition was observed both with increasing and decreasing temperature. The CD spectrum indicated that the heat and cold-denatured states of ELG have substantial secondary structures but lack persistent tertiary packing of the side-chains. In order to clarify the relation between the heat or cold-denatured state and the acid-denatured (A) state characterized previously, we have attempted to observe the temperature dependence of the CD spectrum at pH 1.5. The CD spectrum in the heat-denatured state is similar to that in the A state. The CD spectrum in the A state does not change cooperatively with increasing temperature. These results indicate that the heat-denatured state and the A state are the same structural state. On the other hand, the CD intensity at acid pH cooperatively increased with decreasing temperature. The CD spectrum at low temperature and acid pH is consistent with that in the cold-denatured state. Therefore, the cold-denatured state is distinguished from the heat-denatured state or the A state, and ELG assumes a larger amount of non-native alpha-helices in the cold-denatured state. Small angle X-ray scattering and analytical ultracentrifugation have indicated that ELG assumes an expanded chain-like conformation in the cold-denatured state in contrast to the compact globular conformation in the A state. The relation between the molecular size and the helical content in the partially folded states is discussed.  相似文献   

6.
In this study the pH dependence of the thermal stability of Sso7d from Sulfolobus solfataricus is analyzed. This small globular protein of 63 residues shows a very marked dependence of thermal stability on pH: the denaturation temperature passes from 65.2 degrees C at pH 2.5 to 97.9 degrees C at pH 4.5. Analysis of the data points out that the binding of at least two protons is coupled to the thermal unfolding. By linking the proton binding to the conformational unfolding equilibrium, a thermodynamic model, which is able to describe the dependence upon the solution pH of both the excess heat capacity function and the denaturation Gibbs energy change for Sso7d, is developed. The decreased stability in very acid conditions is due to the binding of two protons on identical and noninteracting sites of the unfolded state. Actually, such sites are two carboxyl groups possessing very low pKa values in the native structure, probably involved in salt-bridges on the protein surface.  相似文献   

7.
To investigate the structural stability of proteins, we analyzed the thermodynamics of an artificially designed 30-residue peptide. The designed peptide, NH2-EELLPLAEALAPLLEALLPLAEALAPLLKK-COOH (PERI COIL-1), with prolines at i + 7 positions, forms a pentameric alpha-helical structure in aqueous solution. The thermal denaturation curves of the CD at 222 nm (pH 7.5) show an unusual cold denaturation occurring well above 0 degrees C and no thermal denaturation is observable under 90 degrees C. This conformational change is reversible and depends on peptide concentration. A 2-state model between the monomeric denatured state (5D) and the pentameric helical state (H5) was sufficient to analyze 5 thermal denaturation curves of PERI COIL-1 with concentrations between 23 and 286 microM. The analysis was carried out by a nonlinear least-squares method using 3 fitting parameters: the midpoint temperature, Tm, the enthalpy change, delta H(Tm), and the heat capacity change, delta Cp. The association number (n = 5) was determined by sedimentation equilibrium and was not used as a fitting parameter. The heat capacity change suggests that the hydrophobic residues are buried in the helical state and exposed in the denatured one, as it occurs normally for natural globular proteins. On the other hand, the enthalpy and the entropy changes have values close to those found for coiled-coils and are quite distinct from typical values reported for natural globular proteins. In particular, the enthalpy change extrapolated at 110 degrees C is about 3 kJ/mol per amino acid residue, i.e., half of the value found for globular proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The heat-induced denaturation kinetics of two different sources of ovalbumin at pH 7 was studied by chromatography and differential scanning calorimetry. The kinetics was found to be independent of protein concentration and salt concentration, but was strongly dependent on temperature. For highly pure ovalbumin, the decrease in nondenatured native protein showed first-order dependence. The activation energy obtained with different techniques varied between 430 and 490 kJ*mole(-1). First-order behavior was studied in detail using differential scanning calorimetry. The calorimetric traces were irreversible and highly scan rate-dependent. The shape of the thermograms as well as the scan rate dependence can be explained by assuming that the thermal denaturation takes place according to a simplified kinetic process where N is the native state, D is denatured (or another final state) and k a first-order kinetic constant that changes with temperature, according to the Arrhenius equation. A kinetic model for the temperature-induced denaturation and aggregation of ovalbumin is presented. Commercially obtained ovalbumin was found to contain an intermediate-stable fraction (IS) of about 20% that was unable to form aggregates. The denaturation of this fraction did not satisfy first-order kinetics.  相似文献   

9.
Wheat germ lipase is a cereal lipase which is a monomeric protein. In the present study we sought to structurally characterize this protein along with equilibrium unfolding in solution. Conformational changes occurring in the protein with varying pH, were monitored by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy, binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS) and dynamic light scattering (DLS). Our study showed that acid denaturation of lipase lead to characterization of multiple monomeric intermediates. Native protein at pH 7.0 showed far-UV spectrum indicating mixed structure with both alpha and beta-type of characteristics. Activity of lipase was found to fall on either sides of pH 7.0–8.0. Acid-unfolded state was characterized at pH 4.0 with residual secondary structure, disrupted tertiary spectrum and red-shifted fluorescence spectrum with decreased intensity. Further decrease in pH lead to formation of secondary structure and acid-induced molten globule state was found to be stabilized at pH 1.4, with exposed tryptophan residues and hydrophobic patches. Notably, interesting finding of this study was characterization of acid-induced state at pH 0.8 with higher secondary structure content than native lipase, regain in tertiary spectrum and induction of compact conformation. Although enzymatically inactive, acid-induced state at pH 0.8 was found to be structurally more stable than native lipase, as shown by chemical and thermal denaturation profiles.  相似文献   

10.
The relationship between pH-induced conformational changes in iso-2 cytochrome c from Saccharomyces cerevisiae and the guanidine hydrochloride induced unfolding transition has been investigated. Comparison of equilibrium unfolding transitions at acid, neutral, and alkaline pH shows that stability toward guanidine hydrochloride denaturation is decreased at low pH but increased at high pH. In the acid range the decrease in stability of the folded protein is correlated with changes in the visible spectrum, which indicate conversion to a high-spin heme state--probably involving the loss of heme ligands. The increase in stability at high pH is correlated with a pH-induced conformational change with an apparent pK near 8. As in the case of homologous cytochromes c, this transition involves the loss of the 695-nm absorbance band with only minor changes in other optical parameters. For the unfolded protein, optical spectroscopy and 1H NMR spectroscopy are consistent with a random coil unfolded state in which amino acid side chains serve as (low-spin) heme ligands at both neutral and alkaline pH. However, the paramagnetic region of the proton NMR spectrum of unfolded iso-2 cytochrome c indicates a change in the (low-spin) heme-ligand complex at high pH. Apparently, the folded and unfolded states of the (inactive) alkaline form differ from the corresponding states of the less stable native protein.  相似文献   

11.
J L Koenig  B G Frushour 《Biopolymers》1972,11(12):2505-2520
The Raman spectra of three globular proteins, beef pancreas chymotrypsinogen A, beef pancreas ribonuclease, and hen egg white ovalbumin have been obtained in the solid state and aqueous solution. X-ray diffraction and circular dichroism evidence have indicated that these proteins have a low α-helical content and a large fraction of the residues in the unordered and β-sheet conformation. The frequencies and intensities of the amide I and amide III lines are consistent with assignments based on the Raman spectra of polypeptides. The intense amide III lines observed in all the spectra would be expected for proteins with a low fraction of the residues in the α-helical conformation. Several spectra changes occur upon dissolution of the proteins in water and may be associated with further hydration of the proteins. The spectrum of thermally denatured chymotrypsinogen is presented. A 3 cm–1 decrease in the frequency of the amide I line of the protein dissolved in D2O upon heating was observed. This observation is consistent with a denaturation mechanism allowing only slight changes in the secondary structure but an increase in solvent penetration upon going from the native to the reversibly denatured state.  相似文献   

12.
The Raman spectra of β-lactoglobulin in the crystalline, freeze-dried, and solution states are compared. The spectra of the freeze-dried and crystalline proteins were practically identical. The conformationally sensitive amide III line appearing at 1242 cm?1 increased in intensity 30% upon dissolution of the protein in water which is interpreted as a conformational change in the disordered chains of the protein. This result appears to be a phenomenon for globular proteins containing a large disordered chain fraction. The alkaline denaturation of β-lactoglobulin was studied. When the pH was increased from 6.0 to 11.0, the amide III line shifted from 1242 to 1246 cm?1, broadened, and decreased in intensity. This is consistent with the conversion of β-sheet regions in β-lactoglobulin to the disordered conformation, as has been proposed by other investigators. At pH 13.5 the amide III shifts to 1257 cm?1 characteristic of a completely disordered protein, indicating that any remaining “core” of β-sheet has been randomized. Several changes in the intensities of the tyrosine and tryptophan vibrations accompany the denaturation. As the pH is increased from 6.0 (native state) to 11.0 (denatured state) the intensity ratio of two tyrosine ring vibrations, I855 cm?1/I830 cm?1, decreases from 1.0:0.9 to 1.0:1.3. The same ratio for a copolymer consisting of 95% glutamic acid and 5% tyrosine at pH 7.0, where the polymer forms a random coil exposing the tyrosine to the aqueous environment, is 1.0:0.62. This ratio more closely resembles that corresponding to β-lactoglobulin at pH 6.0 (native state) than pH 11.0 (denatured state) suggesting that the average tyrosine in the denatured state may be in a more hydrophobic environment than in the native state. A time-dependent polymerization of the denatured protein reported by other investigators and observed by us may account for the change in the tyrosine environment. A tryptophan vibration appearing at 833 cm?1 in the spectrum of the native state becomes weak as the pH is increased to 11.0. The intensity of this line may also reflect the local environment of the tryptophan residue.  相似文献   

13.
Fatima S  Ahmad B  Khan RH 《IUBMB life》2007,59(3):179-186
Studies on the acid-induced denaturation of Mucor miehei lipase (E.C. 3.1.1.3) were performed by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy and binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS). Acid denaturation of the lipase showed loss of secondary structure and alterations in the tertiary structure in the pH range 4 to 2 and 7 to 2 respectively, suggesting that the lipase exists as an acid-unfolded state approximately pH 2.0. A further decrease in pH (from 2.0 to 1.0) resulted in a second transition, which corresponded to the formation of both secondary and tertiary structures. The acid unfolded state at around pH 2.0 has been characterized by significant loss of secondary structure and a small increase in fluorescence intensity with a blue shift of 2 nm, indicating shift of tryptophan residues to less polar environment. Interestingly, the lipase at pH 1.0 exhibits characteristics of molten globule, such as enhanced binding of hydrophobic dye (ANS), native-like secondary structure and slightly altered tryptophanyl environments. That the molten globule of the lipase at pH 1.0 also possesses native-like tertiary structure is an interesting observation made for this lipase.  相似文献   

14.
Polyols (glycerol and sorbitol) and salts (magnesium sulfate, sodium sulfate, and magnesium chloride) have been used to study the refolding of the acid-induced state of human placental cystatin (HPC), which is a low molecular weight (12,500 daltons) thiol proteinase inhibitor, in terms of CD spectroscopy, binding of hydrophobic dye 1-anilinonaphthalene-8-sulfonic acid (ANS), and intrinsic fluorescence measurements. The helical content of acid-denatured HPC increased with increase in glycerol concentration (0–80%). At 80% glycerol concentration, the secondary structural features observed in the far UV-CD region are similar to those of the native state (pH 6.0). The intrinsic fluorescence and near UV-CD studies showed that this 80% glycerol-induced state has a significant amount of tertiary structure with decreased ANS binding compared to the acid-denatured state. It was found that glycerol is more effective in stabilizing the acid-denatured state of HPC as compared to sorbitol. Among salts the stability effect was more for MgCl2 (used up to concentration of 3 M) compared to MgSO4 and Na2SO4 (used up to the concentration of 1.5 M due to restricted solubility of HPC at higher sulfate salt concentrations) as determined by CD studies and fluorescence measurements, which showed secondary and tertiary structural resemblance of this MgCl2-induced state close to native state and showed overall spectral features in between the native state and the acid-denatured state. This MgCl2 (3 M)-induced state showed decreased ANS fluorescence as compared to the acid-denatured state but more than that of the native state. The results taken together suggest that the acid-denatured state of HPC in the presence of 80% glycerol or 3 M MgCl2 has a conformation in between that of the native state (pH 6.0) and the acid-induced state at pH 2.0. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 6, pp. 768–777.  相似文献   

15.
Heat denaturation of native globular proteins is a cooperative process usually connected with the melting of the main part of their regular secondary structure. In this paper, a noncooperative temperature-induced melting of the regular secondary structure in the carbonic anhydrase B at pH 2.6 in heavy water is observed by ir spectroscopy. The molecules of carbonic anhydrase B in an acid medium, unlike the native ones, do not have a specific tertiary structure. Nevertheless, the β-structure content is about the same in both of these states. A temperature-induced noncooperative melting process takes place from 10 to 67°C with a decrease of the antiparallel β-form content by about one third. The remaining part of the β-form melts with a more intensive heat absorption, with a maximum at 87°C. The whole melting process is practically reversible. We assume that the observed noncooperative process displays a general property of a new type of structural state of the globular protein—the “molten globule state.”  相似文献   

16.
The role of the free sulfhydryl group of beta-lactoglobulin in the formation of a stable non-native monomer during heat-treatment of beta-lactoglobulin solutions was investigated. Two concomitant events occurred at the earlier stage of heating: unfolding of native globular monomer and intramolecular sulfhydryl/disulfide exchange reaction. Thus, two denatured monomeric species were formed: a non-native monomer with exposed Cys-121 (Mcys121) which became reversible after cooling, and a stable non-native monomer with exposed Cys-119 (Mcys119) which exhibited both a larger hydrodynamic conformation than native monomer and low solubility at pH 4.7. The results also show that the formation of these monomeric species throughout heat-induced denaturation of native beta-lg monomers is faster than their subsequent aggregation. A mechanism describing the behavior of beta-lg denaturation/aggregation during heat-treatment under selected conditions (5.8 mg/ml, low ionic strength, pH 6.6, 85 degrees C) is presented.  相似文献   

17.
The measurement of insoluble proteins using a modified Bradford assay   总被引:4,自引:0,他引:4  
A technique for determining the amount of thermally denatured, insoluble protein is described. The assay has been validated using four globular proteins, bovine serum albumin, beta-lactoglobulin, lysozyme, and ovalbumin. It consists of a resolubilization protocol, using 8 M urea and 5% 2-mercaptoethanol, linked to the Bradford dye binding assay. The resolubilization protocol was carried out at 100 degrees C to enable complete recovery of all insoluble proteins. Beta-Lactoglobulin resolubilization was completed after heating for 1 min, whereas samples of bovine serum albumin, lysozyme, and ovalbumin required heating for 1.5 min. The assay can measure protein concentrations as small as 10 micrograms, typically with standard deviations of 3%, thus comparing favorably with the standard Bradford assay. Other types of denaturation, such as chemical denaturation causing subsequent insolubility, may be studied with this technique providing that there is no interference with the Bradford assay.  相似文献   

18.
The association-dissociation and denaturation behaviour of the major protein fraction, alpha-globulin of sesame seed (Sesamum indicum L.), in acid and alkaline solutions in the ranges of pH 4.2-1.5 and pH 7-12 have been studied. The results of gel filtration, fluorescence and viscosity measurements indicate dissociation and denaturation of the protein up to pH approximately 3. The difference spectrum in this region arises from a combination of dissociation, denaturation and charge effect on the chromophore. In still stronger acid solution, reassociation of the dissociated fraction takes place by hydrophobic interaction. In alkaline solution dissociation takes place around pH 8, and above pH 10 dissociation and denaturation proceed simultaneously as has been evidenced by sedimentation, fluorescence, spectral change, optical rotation and viscosity measurements. The phenolic group (pKInt=10.6) in the protein is abnormal and denaturation in alkaline solution is irreversible. Above pH 11.5 further dissociation of the protein takes place. Characteristic pH values of transition from 10.6-10.8 indicate that the transition of the protein involves a single step in alkaline solution.  相似文献   

19.
Acidic pH plays an important role in the membrane insertion of protective antigen (PA) of anthrax toxin leading to the translocation of the catalytic moieties. The structural transitions occurring in PA as a consequence of change in pH were investigated by fluorescence and circular dichroism measurements. Our studies revealed the presence of two intermediates on-pathway of acid induced unfolding; one at pH 2.0 and other at pH 4-5. Intrinsic fluorescence measurements of these intermediates showed a red shift in the wavelength of emission maximum with a concomitant decrease in fluorescence intensity, indicative of the exposure of tryptophan residues to the bulk solvent. Furthermore, no significant change was seen in the secondary structure of PA at a pH of 2.0, as indicated by far UV-CD spectra. The low pH intermediate of PA was characterized using the hydrophobic dye, 8-anilino-1-naphthalenesulfonate, and was found to have properties similar to those of a molten globule state.  相似文献   

20.
The hydrodynamic behavior of bovine myelin basic protein was studied by gel filtration through Sephadex G-100 under conditions which included variations in pH from 2 to 12, variations in ionic strength from 0.01 to 1.5 M at pH 2 and from 0.1 to 2 M at pH 7, and variations in guanidinium chloride concentration from 0 to 6 M. A number of well characterized compact globular proteins were subjected to the same conditions for comparison. Compact globular proteins showed major conformational transitions due to acid, alkali, and guanidinium chloride denaturation and, possibly, minor transitions as well. Myelin basic protein behaved like a flexible linear polyelectrolyte, expanding continuously between pH 11 and pH 2 to 3 at ionic strength 0.1 M and contracting continuously with increase in ionic strength at pH 2 and at pH 7 to the point of salting-out. Relatively low concentrations of guanidinium chloride (approximately 0.5 M) were sufficient to cause the basic protein to expand. With increasing concentration of the denaturant the molecule continued to expand, but in a noncooperative manner. These results demonstrated the lack of significant intramolecular stabilization in the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号