首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments on compass orientation under artificial light were conducted with adult individuals of Talitrus saltator. The aim was to reproduce in the laboratory an orientation based on the sun compass corresponding to that recorded in conditions of the true sun and sky. This was obtained by the creation within an opaque Plexiglas dome of a scenario that permitted variation of the brightness of the artificial sky and sun. The results show that it is possible to obtain sun compass orientation corresponding to the natural situation even in an artificial environment. It can be concluded that sandhoppers identify an artificial light source as the sun if the artificial sky is also illuminated and if the intensities of the artificial sun and sky exceed certain threshold values (1.13 and 10 μW cm−2, respectively). The results of other experiments under the natural blue sky with an artificial sun and with the real sun attenuated are discussed. Accepted: 23 May 1997  相似文献   

2.
The supralittoral amphipod Talitrus saltator is well known for its capacity for astronomical orientation using the sun and moon as compasses. It has also been demonstrated that the sun compass is innate in this species. In our experiments, we released inexpert (naive) young born in the laboratory into a confined environment under the full moon and in the absence of the horizontal component of the magnetic field. They were allowed to see the natural sky and the moon only at the moment of release. The young individuals were obtained in the laboratory by crossing adult individuals from the same and different populations of sandhoppers. The young from intrapopulation crosses were well oriented towards the directions corresponding to those of their parents, whereas the young from interpopulation crosses were oriented in an intermediate direction. Therefore, our experiments demonstrate in the sandhopper T. saltator that sea-land moon orientation relies on an innate chronometrically compensated mechanism.  相似文献   

3.
The relationship between the chronometric system of compensation for the apparent movement of the sun and that for the moon has been the subject of several, never proven, hypotheses. Our studies on sandhoppers have demonstrated that the chronometric mechanism of the moon compass is separate from that of the sun compass. They show (i) that a period of seven days in constant darkness has no influence on the capacity for orientation, either solar or lunar, and indicates the presence of one or more continuously operating timing mechanisms; (ii) that two different shifts in the light–dark phase have no effect on the chronometric mechanism of lunar orientation, but they do affect that of solar orientation; and (iii) that exposure to an artificial moon delayed by seven days with respect to the natural cycle causes the expected change in the mean direction of individuals tested under the natural moon, but not of those tested under the sun.  相似文献   

4.
To provide a first assessment of the parameters used by adult individuals of the supralittoral isopod Tylos europaeus to recognize the sun as a compass orienting reference, we used the apparatus designed and tested with the amphipod T. saltator. The apparatus reproduces a scenario similar to the natural one (with a false sun and sky illuminated artificially). The scenario produced inside the apparatus is sufficient to induce the isopods to exhibit solar orientation similar to that of conspecifics tested under the natural sun and sky. Nevertheless, this ability depends on some threshold values of illumination of the artificial sun and sky: to obtain a good orientation the irradiance of the artificial sun and sky should be more than 0.4 and 1.3 μW/cm2 respectively. When the artificial sky is not illuminated, the individuals show only a photopositive tendency.  相似文献   

5.
This article analyses the relevant studies that have made sandhoppers a model subject for the study of orientation, and traces the development of the paradigm through innovative hypotheses and empirical evidence. Sandhoppers are able to maintain their direction without sensorial contact with the goal, which is their burrowing zone extended along the beach, but very narrow across it. They actively determine the direction of their movements, according to their internal state and the environmental features encountered. Each population shows an 'innate directional tendency' adapted to the shoreline of origin, and the inexpert laboratory-born young behave in a similar way to the adults. Genetic differences have been demonstrated between, as well as within natural populations. The question of the calibration of the sun compass to orientation on a particular shoreline implies a redundancy of mechanisms of orientation. Orientation mechanisms may involve environmental cues perceived through diverse sensory modalities, and range from simple orientation reflexes to sun compass navigational systems. These include scototaxis and geotaxis, and the response to the silhouette of the dune, in addition to sun and moon orientation, which is dependent on the time of the day and orientates daily migrations on the beach. Different modalities of orientation may operate singly, or in conjunction with each other, and their ecological significance may vary according to the habitat and lifestyle of the animals. Taken collectively, the orientation behaviour of the group appears to be a most accommodating phenotype, with considerable adaptive potential. The evidence from comparative studies of different populations promotes consideration of behavioural plasticity as an adaptation to changing coastlines.  相似文献   

6.
Orientation toward breeding ponds plays an important role in the seasonal movements of amphibians. In this study, adult marbled newts were tested in a circular arena to determine sensory cues used to locate breeding ponds. Animals were collected from a temporary pond situated in northern Spain, taken to the experimental site 340 m distant, and tested for orientation under a variety of conditions (i.e., orientation under a clear night sky, orientation under an overcast night sky, and orientation under a clear night sky in the presence of an altered geomagnetic field). These investigations have demonstrated that the marbled newt is able to orient using celestial cues. Animals chose a compass course in the direction of their breeding pond only when celestial cues were available. Conversely, the ambient geomagnetic field does not seem to be relevant to orientation of marbled newts since they were unable to orient themselves using the ambient geomagnetic field in the absence of celestial cues. Electronic Publication  相似文献   

7.
Migratory birds might respond to moonlight in at least four ways: (1) a geographical reference for selecting a compass direction, (2) a celestial ‘landmark’ to facilitate maintenance of a preferred heading, (3) a stimulus that distracts migrants and introduces error in compass orientation, or (4) a source of illumination that facilitates nocturnal flight. This study examines the response of migratory savannah sparrows (Passerculus sandwichensis) to moonlight during controlled tests in orientation cages. I found no evidence that savannah sparrows use a lunar compass to select a direction. If savannah sparrows do use the moon as a ‘landmark’ to maintain a direction selected with reference to a different cue, I expected birds to be better oriented on overcast nights when the moon is present than they are when the moon is absent. The results suggest otherwise. Usually, savannah sparrows respond phototactically to the moon by directing their cage activity toward or at a constant angle with respect to the moon's azimuth. Interestingly, the migrant's response to moonlight depended on whether the bird viewed the setting sun earlier that evening.  相似文献   

8.
If released in water or on sand the supratidal amphipod Talorchestia longicornis Say amphipods moves in the onshore direction. The present study was designed to determine whether this species uses the sun as a cue for orientation and if so, which visual pigment in the compound eyes is involved. When tested in an apparatus with a view of only the sun and sky amphipods were disoriented when the sun was obscured by clouds. However, when the sun was visible, they oriented in the onshore direction of their home beach in both water and air during both the morning and afternoon. Resetting the time of their circadian rhythm in activity with either an altered light:dark or diel temperature cycle also reset the chronometric mechanism associated with sun compass. orientation. T. longicornis has two visual pigments with absorption maxima near 420 nm and 520 nm. Only the 420 nm pigment is used for sun compass orientation, which may be an adaptation for increasing the contrast between the sun and background scattered skylight or for detecting the radiance distribution of skylight. Irradiating the 520 nm absorbing pigment alone induced positive phototaxis to the sun but not onshore orientation. Thus, T. longicornis shows wavelength specific behavior by using only one of its visual pigments for sun compass orientation.  相似文献   

9.
Summary The diurnal escape response of fringetoed lizards (Uma notata) startled by predators demonstrates clear directional orientation not likely to depend on local landmarks in the shifting sands of their desert environment. Evidence that celestial orientation is involved in this behavior has been sought in the present experiments by testing the effects of (1) phase shifting the animal's internal clock by 6 h and (2) by training the lizards to seek shelter while exposed to natural polarization patterns. In the first case, 90° shifts in escape direction were demonstrated in outdoor tests, as expected if a time-compensated sun or sky polarized light compass is involved. In the second instance, significant bimodale-vector dependent orientation was found under an overhead polarizing light filter but this was only evident when the response data were transposed to match the zenithe-vector rotation dependent on the sun's apparent movement through the sky. This extends to reptiles the capacity to utilize overheade-vector directions as a time-compensated sky compass. The sensory site of this discrimination and the relative roles of sun and sky polarization in nature remain to be discovered.  相似文献   

10.
To acquire more information about the identification and use of the sun and other celestial cues in the sea–land orientation of the sandhopper Talitrus saltator, we carried out releases in a confined environment during a partial solar eclipse and at sunset. The sandhoppers were unable to identify the sun (86% covered) during the eclipse nor to use other celestial compass factors of orientation. This was probably due to the low level of light intensity (close to the minimum level for orientation recorded at sunset) and to the variations in intensity and pattern of skylight polarization.  相似文献   

11.
Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle’s orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer.  相似文献   

12.
Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.  相似文献   

13.
The orientation system of migratory birds consists of a magnetic compass and compasses based upon celestial cues. In many places, magnetic compass directions and true or geographic compass directions differ (referred to as magnetic declination). It has been demonstrated experimentally in several species that the innate preferred direction of magnetic orientation can be calibrated by celestial rotation, an indicator of geographic directions. This calibration process brings the two types of compass into conformity and provides the birds with a mechanism that compensates for the spatial variation in magnetic declination. Calibration of magnetic orientation has heretofore been demonstrated only with hand-raised birds exposed to very large declination (90° or more). Here we show that the magnetic orientation of wild birds from near Albany, New York, USA (declination = 14° W) was N–S, a clockwise shift of 26° from the NNW–SSE direction of birds raised entirely indoors. Hand-raised birds having visual experience with either the daytime sky or both day and night sky orientated N–S, similar to wild-caught birds. These data provide the first confirmation that calibration of magnetic orientation occurs under natural conditions and in response to modest declination values.  相似文献   

14.
To see whether the migratory orientation of pied flycatchers (Ficedula hypoleuca Pallas) is genetically encoded with respect to the earth magnetic field a group of young birds was hand-raised. They were thus prevented from ever experiencing the sky. The birds were tested in autumn 1980 and 1981 in the local geomagnetic field (Fig. 1) and in three artificial fields (Fig. 2a-c). The results show that their magnetic compass matures independent of any experience with the sky and contains sufficient information for the birds to orient toward their migratory direction.  相似文献   

15.
Domestic chicks are able to find a food goal at different times of day, with the sun as the only consistent visual cue. This suggests that domestic chickens may use the sun as a time-compensated compass, rather than as a beacon. An alternative explanation is that the birds might use the earth's magnetic field. In this study, we investigated the role of the sun compass in a spatial orientation task using a clock-shift procedure. Furthermore, we investigated whether domestic chickens use magnetic compass information when tested under sunny conditions.Ten ISA Brown chicks were housed in outdoor pens. A separate test arena comprised an open-topped, opaque-sided, wooden octagonal maze. Eight goal boxes with food pots were attached one to each of the arena sides. A barrier inside each goal box prevented the birds from seeing the food pot before entering. After habituation, we tested in five daily 5-min trials whether chicks were able to find food in an systematically allocated goal direction. We controlled for the use of olfactory cues and intra-maze cues. No external landmarks were visible. All tests were done under sunny conditions. Circular statistics showed that nine chicks significantly oriented goalwards using the sun as the only consistent visual cue during directional testing. Next, these nine chicks were subjected to a clock-shift procedure to test for the role of sun-compass information. The chicks were housed indoors for 6 days on a light-schedule that was 6 h ahead of the natural light–dark schedule. After clock-shifting, the birds were tested again and all birds except one were disrupted in their goalward orientation. For the second experiment, six birds were re-trained and fitted with a tiny, powerful magnet on the head to disrupt their magnetic sense. The magnets did not affect the chicks’ goalward orientation.In conclusion, although the strongest prediction of the sun-compass hypothesis (significant re-orientation after clock-shifting) was neither confirmed nor refuted, our results suggest that domestic chicks use the sun as a compass rather than as a beacon. These findings suggest that hens housed indoors in large non-cage systems may experience difficulties in orientation if adequate alternative cues are unavailable. Further research should elucidate how hens kept in non-cage systems orient in space in relation to available resources.  相似文献   

16.
Many animals rely on a sun compass for spatial orientation and long-range navigation. In addition to the Sun, insects also exploit the polarization pattern and chromatic gradient of the sky for estimating navigational directions. Analysis of polarization-vision pathways in locusts and crickets has shed first light on brain areas involved in sky compass orientation. Detection of sky polarization relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Brain areas involved in polarization processing include parts of the lamina, medulla and lobula of the optic lobe and, in the central brain, the anterior optic tubercle, the lateral accessory lobe and the central complex. In the optic lobe, polarization sensitivity and contrast are enhanced through convergence and opponency. In the anterior optic tubercle, polarized-light signals are integrated with information on the chromatic contrast of the sky. Tubercle neurons combine responses to the UV/green contrast and e-vector orientation of the sky and compensate for diurnal changes of the celestial polarization pattern associated with changes in solar elevation. In the central complex, a topographic representation of e-vector tunings underlies the columnar organization and suggests that this brain area serves as an internal compass coding for spatial directions.  相似文献   

17.
Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.  相似文献   

18.
Zusammenfassung V?gel stellen den Bezug zum Ziel indirekt über ein externes Referenzsystem her. Der Navigationsproze? besteht deshalb aus zwei Schritten: zun?chst wird die Richtung zum Ziel als Kompa?kurs festgelegt, dann wird dieser Kurs mit Hilfe eines Kompa?mechanismus aufgesucht. Das Magnetfeld der Erde und Himmelsfaktoren werden von den V?gel als Kompa? benutzt. In der vorliegenden Arbeit werden der Magnetkompa?, der Sonnenkompa? und der Sternkompa? der V?gel in ihrer Funktionsweise, ihrer Entstehung und ihrer biologischen Bedeutung vorgestellt. Der Magnetkompa? erwies sich als Inklinationskompa?, der nicht auf der Polarit?t, sondern auf der Neigung der Feldlinien im Raum beruht; er unterscheidet „polw?rts“ und „?quatorw?rts“ statt Nord und Süd. Er ist ein angeborener Mechanismus und wird beim Vogelzug und beim Heimfinden benutzt. Seine eigentliche Bedeutung liegt jedoch darin, da? er ein Referenzsystem bereitstellt, mit dessen Hilfe andere Orientierungsfaktoren zueinander in Beziehung gesetzt werden k?nnen. Der Sonnenkompa? beruht auf Erfahrung; Sonnenazimut, Tageszeit und Richtung werden durch Lernprozesse miteinander verknüpft, wobei der Magnetkompa? als Richtungsreferenzsystem dient. Sobald er verfügbar ist, wird der Sonnenkompa? bei der Orientierung im Heimbereich und beim Heimfinden bevorzugt benutzt; beim Vogelzug spielt er, wahrscheinlich wegen seiner Abh?ngigkeit von der geographischen Breite, kaum eine Rolle. Der Sternkompa? arbeitet ohne Beteiligung der Inneren Uhr; die V?gel leiten Richtungen aus den Konfigurationen der Sterne zueinander ab. Lernprozesse erstellen den Sternkompa? in der Phase vor dem ersten Zug; dabei fungiert die Himmelsrotation als Referenzsystem. Sp?ter, w?hrend des Zuges, übernimmt der Magnetkompa? diese Rolle. Die relative Bedeutung der verschiedenen Kompa?systeme wurde in Versuchen untersucht, bei denen Magnetfeld und Himmelsfaktoren einander widersprechende Richtungs-information gaben. Die erste Reaktion der V?gel war von Art zu Art verschieden; langfristig scheinen sich die V?gel jedoch nach dem Magnetkompa? zu richten. Dabei werden die Himmelsfaktoren umgeeicht, so da? magnetische Information und Himmelsinformation wieder im Einklang stehen. Der Magnetkompa? und die Himmelsfaktoren erg?nzen einander: der Magnetkompa? ersetzt Sonnen- und Sternkompa? bei bedecktem Himmel; die Himmelsfaktoren erleichtern den V?geln das Richtungseinhalten, zu dem der Magnetkompa? offenbar wenig geeignet ist. Magnetfeld und Himmelsfaktoren sollten deshalb als integrierte Komponenten eines multifaktoriellen Systems zur Richtungsorientierung betrachtet werden.
The orientation system of birds — I. Compass mechanisms
Summary Because of the large distances involved, birds establish contact with their goal indirectly via an external reference. Hence any navigation is a two-step process: in the first step, the direction to the goal is determined as a compass course; in the second step, this course is located with a compass. The geomagnetic field and celestial cues provide birds with compass information. The magnetic compass of birds, the sun compass the star compass and the interactions between the compass mechanisms are described in the present paper. Magnetic compass orientation was first demonstrated by testing night-migrating birds in experimentally altered magnetic fields: the birds changed their directional tendencies according to the deflected North direction. The avian magnetic compass proved to be an inclination compass: it does not use polarity; instead it is based on the axial course of the field lines and their inclination in space, distinguishing “poleward” and “equatorward” rather than North and South. Its functional range is limited to intensities around the local field strength, but this biological window is flexible and can be adjusted to other intensities. The magnetic compass is an innate mechanism that is widely used in bird migration and in homing. Its most important role, however, is that of a basic reference system for calibrating other kinds of orientation cues. Sun compass orientation is demonstrated by clock-shift experiments: Shifting the birds' internal clock causes them to misjudge the position of the sun, thus leading to typical deflections which indicate sun compass use. The analysis of the avian sun compass revealed that it is based only on sun azimuth and the internal clock; the sun's altitude is not involved. The role of the pattern of polarized light associated with the sun is unclear; only at sunset has it been shown to be an important cue for nocturnal migrants, being part of the sun compass. The sun compass is based on experience; sun azimuth, time of day and direction are combined by learning processes during a sensitive period, with the magnetic compass serving as directional reference. When established, the sun compass becomes the preferred compass mechanism for orientation tasks within the home region and homing: in migration, however, its role is minimal, probably because of the changes of the sun's arc with geographic latitude. The star compass was demonstrated in night-migrating birds by projecting the northern stars in different directions in a planetarium. The analysis of the mechanism revealed that the internal clock is not involved; birds derive directions from the spatial relationship of the star configurations. The star compass is also established by experience; the directional reference is first provided by celestial rotation, later, during migration, by the magnetic compass. The relative importance of the various compass mechanisms has been tested in experiments in which celestial and magnetic cues gave conflicting information. The first response of birds to conflicting cues differs considerably between species; after repeated exposures, however, the birds oriented according to magnetic North, indicating a long-term dominance of the magnetic compass. Later tests in the absence of magnetic information showed that celestial cues were not simply ignored, but recalibrated so that they were again in agreement with magnetic cues. The magnetic compass and celestial cues complement each other: the magnetic field ensures orientation under overcast sky; celestial cues facilitate maintaining directions, for which the magnetic compass appears to be ill suited. In view of this, the magnetic field and celestial cues should be regarded as integrated components of a multifactorial system for directional orientation.
  相似文献   

19.
《Animal behaviour》1988,36(1):150-158
Despite being the most studied of all avian orientation systems, important questions still remain about the sun compass of homing pigeons, Columba livia. White it is well-documented that the sun compass is usually learned by young pigeons during the first 10–12 weeks of life, the mechanism by which it is calibrated to adjust for seasonal changes in the sun's azimuth is not known with certainty. Previous experiments using short-term deflector loft pigeons indicated that the sun compass may be calibrated by referencing celestial polarization patterns. The present paper describes important measurable changes in the previously reported orientation behaviour of short-term deflector loft birds, and suggests a correlation between these changes and the presence of a massive upper-atmospheric dust cloud of volcanic origin which significantly altered natural skylight polarization patterns in 1982 and 1983. Moreover, it is shown that when the short-term effect was absent (at times when data from previous years suggested it should be present), the birds were also not using sun compass orientation, as demonstrated by their failure to show the standard ‘clockshift’ response to a 6-h fast shift of their internal clocks. These results support the hypothesis that reflected light cues, rather than odours, are the basis of the deflector loft effect in pigeon homing.  相似文献   

20.
Adult bobolinks were tested in a planetarium under patterns of nonrotating artificial stars to determine the influence of natural and modified magnetic fields on their migratory orientation. The modified magnetic field was of the same total intensity as the natural field, but the vertical vector was reversed, causing the resulting total vector to point up and north (compared to the natural northern hemisphere vector pointing down and north). When exposed to the artificial magnetic field, the birds reversed their preferred headings relative to the stellar and geographic references. This response is consistent with the use of an inclination compass. Although 60 % of the individuals reversed their headings the first night, some individuals took up to 5 nights (mean = 2.1 nights).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号