首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim was to investigate if human oocytes, like mouse oocytes, exhibit spontaneous Ca(2+) oscillations and nuclear translocation of PLC-beta1 prior to germinal vesicle breakdown (GVBD), and to correlate these events with the evolution of chromatin configuration as a landmark for the meiosis resumption kinetics. Human germinal vesicle (GV) oocytes were either loaded with Fluo-3 probe to record Ca(2+) signals or fixed for subsequent fluorescent labeling of both chromatin and PLC-beta1, and immunogold labeling of PLC-beta1. Here for the first time, we show that human oocytes at the GV-stage exhibit spontaneous Ca(2+) oscillations. Interestingly, only oocytes with a large diameter and characterized by a compact chromatin surrounding the nucleolus of the GV could reveal these kind of oscillations. We also observed a translocation of PLC-beta1 from the cytoplasm towards the nucleus during in vitro maturation of human oocytes. Spontaneous calcium oscillations and nuclear translocation of PLC-beta1 may reflect some degree of oocyte maturity. The impact of our results may be very helpful to understand and resolve many enigmatic problems usually encountered during the in vitro meiotic maturation of human GV oocytes.  相似文献   

2.
The processes occurring from sperm penetration to chromosome formation in the cytoplasm of Oocytes matured in vitro, after removal of the germinal vesicle (GV) and before hormonal stimulation, were observed with electron microscope. The dechorionated oocytes, matured without the participation of the GV material, responded to sperm penetration by initiating a cortical reaction within 20 seconds after insemination. The pentrating sperm nuclei transformed to male pronuclei with vesiculation of the nuclear membrane, chromatin decondensation, and formation of a pronuclear membrane. Before cleavage, however, no chromosome formation was observed in these oocytes. Instead, the fully grown pronuclei change to a picnotic chromatin mass without or with an only fragmented nuclear membrane, then disappeared. On the contrary, sperm nuclei that penetrated into the cytoplasm of naked eggs containing GV material during maturation underwent pronuclear and chromosomal formation. Judging from these observation in Oryzias oocytes, the GV material seems to be unnecessary for the formation of pronucleus from the compact sperm nucleus, but is essential for the process of chromosomal formation.  相似文献   

3.
Changes in the organization of germinal vesicle chromatin in mouse oocytes have been analyzed by fluorescence microscopy with respect to progressive stages of follicular development and the disposition of oocyte cytoplasmic microtubules. Four discrete patterns of chromatin organization exist in germinal vesicle (GV)-stage oocytes isolated from the ovaries of 21-25-day-old gonadotropin-primed mice. Analysis of ovarian cryosections stained with the DNA-binding fluorochrome Hoechst 33258 indicates that sequential changes in GV chromatin occur during folliculogenesis that result in the formation of a continuous perinucleolar chromatin sheath at the time of antrum formation. Specific alterations in the cytoplasmic microtubule complex of GV-stage oocytes were observed that correlate with chromatin patterns. The extensive cytoplasmic microtubule complex seen in oocytes of preantral follicles initially localizes to perinuclear areas of the ooplasm. This is followed by a progressive reduction in cytoplasmic microtubules and the appearance of prominent microtubule-organizing centers at the nuclear periphery. Coordinated nuclear and microtubular alterations also occur under in vitro conditions prior to progression of meiosis to prometaphase-1. The results are discussed with respect to the ongoing differentiation of the oocyte nucleus and the microtubule cytoskeleton during folliculogenesis in preparation for the resumption of meiosis.  相似文献   

4.
In mammals, oocyte acquires a series of competencies sequentially during folliculogenesis that play critical roles at fertilization and early stages of embryonic development. In mouse, chromatin in germinal vesicle (GV) undergoes dynamic changes during oocyte growth and its progressive condensation has been related to the achievement of developmental potential. Cumulus cells are essential for the acquisition of meiotic competence and play a role in chromatin remodeling during oocyte growth. This study is aimed to characterize the chromatin configuration of growing and fully grown bovine oocytes, the status of communications between oocyte and cumulus cells and oocyte developmental potential. Following nuclear staining, we identified four discrete stages of GV, characterized by an increase of chromatin condensation. GV0 stage represented 82% of growing oocytes and it was absent in fully grown oocytes. GV1, GV2, and GV3 represented, respectively, 24, 31, and 45% of fully grown oocytes. Our data indicated a moderate but significant increase in oocyte diameter between GV0 and GV3 stage. By dye coupling assay the 98% of GV0 oocytes showed fully open communications while the number of oocytes with functionally closed communications with cumulus cells was significantly higher in GV3 group than GV1 and GV2. However, GV0 oocytes were unable to progress through metaphase II while GV2 and GV3 showed the highest developmental capability. We conclude that in bovine, the progressive chromatin condensation is related to the sequential achievement of meiotic and embryonic developmental competencies during oocyte growth and differentiation. Moreover, gap-junction-mediated communications between oocyte and cumulus cells could be implicated in modulating the chromatin remodeling process.  相似文献   

5.
Sperm nuclear decondensing activity in mammalian oocytes is dependent upon the maturational state of the oocyte. It is maximal in mature, metaphase II oocytes and minimal or absent in immature germinal vesicle (GV) and fertilized pronuclear oocytes. Previous studies suggested that this difference may be due to the relative ability of an oocyte to reduce the protamine disulfide bonds in the sperm nucleus. The results of this study show that mature hamster oocytes contain significantly more glutathione (GSH), about 8 mM, and hence more disulfide reducing power, as compared with GV (4 mM) or pronuclear (6 mM) oocytes. Furthermore, the acquisition of sperm nuclear decondensing activity by maturing oocytes can be prevented or delayed by blocking GSH synthesis with L-buthionine-S,R-sulfoximine during the early stages of oocyte maturation. This is the first evidence that modulation of GSH levels during oocyte maturation and fertilization may be a mechanism by which sperm nuclear decondensing activity is regulated.  相似文献   

6.
In our study, we have examined the pattern of global histone modification changes in somatic cell nuclei after their transfer into mouse oocytes at different stages of maturation or after their parthenogenetic activation. While germinal vesicle (GV) staged immature oocytes are strongly labeled with anti-acetylated histone H3 and H4 antibodies, the signal is absent in both metaphase I and metaphase II oocytes (MI, MII). In contrast, the oocytes of all maturation stages show a presence of trimethylated H3/K4 in their chromatin. When somatic cells were fused to intact or enucleated GV oocytes, both the GV and the somatic cell nucleus showed a very strong signal for all the antibodies used. On the other hand, when somatic cells nuclei that are AcH3 and AcH4 positive before fusion are introduced into either intact or enucleated MI or MII oocytes, their acetylation signal decreased rapidly and was totally absent after a prolonged culture. This was not the case when anti-trimethyl H3/K4 antibody was used. The somatic cell chromatin showed only a slight decrease in the intensity of labeling after its transfer into MI or MII oocytes. This decrease was, however, evident only after a prolonged culture. These results suggest not only a relatively higher stability of the methylation modification but also some difference between the oocyte and somatic chromatin. The ability to deacetylate the chromatin of transferred somatic nuclei disappears rapidly after the oocyte activation. Our results indicate that at least some reprogramming activity appears in the oocyte cytoplasm almost immediately after GV breakdown (GVBD), and that this activity rapidly disappears after the oocyte activation.  相似文献   

7.
To elucidate the effects of ooplasmic factors on the early morphological changes in hamster sperm heads within the ooplasm, immature ovarian oocytes at the germinal vesicle stage (GV oocytes), ovulated fully mature oocytes, and fertilized eggs at anaphase II or the pronuclear stage (PN eggs) were examined in detail 15–30 min after insemination or reinsemination. Thin-sectioning studies demonstrated distinct materials released from the sperm nucleus over the entire postacrosomal nuclear surface immediately after disappearance of the sperm nuclear envelope. The release occurred in all of the oocytes and eggs prior to or even in the absence of subsequent chromatin decondensation. Depending upon the stage of the penetrated oocyte or egg, however, the materials varied in morphology: several hemispherical projections of amorphous material within mature oocytes; a number of electron-dense globules within GV oocytes and PN eggs; and both forms within eggs at anaphase II-telophase II. These observations and the fact that only the release of the amorphous material was accompanied by sperm chromatin decondensation indicate that this release was the initial process of chromatin decondensation, whereas the release of the globules resulted from a deficiency or lack of ooplasmic factors affecting the sperm nucleus. Restriction of the release in both forms of material to the late meiotic phase suggests changes in the factors associated with progression of meiosis. To approach an understanding of the mechanism of successful decondensation of sperm chromatin, the ooplasmic factors considered responsible for the stage-dependent release of nuclear materials are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

8.
We compared the profile of histone H1 kinase activity, reflecting Maturation Promoting Factor (MPF) activity in oocytes bisected at the germinal vesicle (GV) stage and allowed to mature as separate oocyte halves in vitro. Whereas the oocyte halves containing the nucleus exhibited the same profile of increased kinase activity as that typical for intact oocytes, the anuclear halves revealed strong inhibition of the increase in this activity soon after germinal vesicle breakdown (GVBD). In contrast, the profile of MAP kinase activity did not differ significantly between anuclear and nucleus-containing oocyte halves throughout maturation. Of the two MPF components, CDK1 and cyclin B1, the amount of the latter was significantly reduced in anuclear halves, a reduction due to low-level synthesis and not to enhanced degradation. Expression of three reporter luciferase RNAs constructed, respectively, to contain cyclin B1-specific 3'UTR, the globin-specific 3'UTR, or no 3'UTR sequence was enhanced in nuclear halves, with significantly greater enhancement for the construct containing cyclin B1-specific 3'UTR as compared to the two other RNAs. We conclude that the profile of activity of MPF during mouse oocyte maturation is controlled by an unknown GV-associated factor(s) acting via 3'UTR-dependent control of cyclin B1 synthesis. These results require the revision of the hitherto prevailing view that the control of MPF activity during mouse oocyte maturation is independent of GV-derived material.  相似文献   

9.
Bovine immature oocytes cultured for various times in TC-199 medium were inseminated with frozen-thawed spermatozoa in Medium BO with caffeine (5 mM) and heparin (10 micrograms/ml). Very high penetration rates (95-100%) were obtained in all oocytes which had been cultured for 0-20 h. When oocytes cultured for 0 and 4 h were inseminated, 100% of them were penetrated and had a decondensing sperm head and most of the oocytes remained at the stage of condensed germinal vesicle (GV) to telophase-I 20-22 h after insemination. The formation of male and female pronuclei was first observed in oocytes inseminated 8 h after culture. The proportions of polyspermy and average number of spermatozoa in penetrated oocytes gradually decreased as oocyte maturation proceeded. Penetration of at least one spermatozoon with a decondensing head into oocytes at the GV stage (without culture) was almost completed up to 8 h after insemination and at that time most of the penetrated oocytes were still at the stage of GV or condensed GV. These results indicate that maturation of bovine oocytes is not required for sperm penetration into the vitellus or for sperm nuclear decondensation under the in-vitro conditions used.  相似文献   

10.
Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes were studied using a new method that allows a clearer visualization of both nucleolus and chromatin after Hoechst staining. The GV chromatin of porcine oocytes was classified into five configurations, based on the degree of chromatin condensation, and on nucleolus and nuclear membrane disappearance. While the GV1 to 4 configurations were similar to those reported by previous studies, the GV0 configuration was distinct by the diffuse, filamentous pattern of chromatin in the whole nuclear area. Most of the oocytes were at the GV0 stage in the <1 and 1-1.9 mm follicles, but the GV0 pattern disappeared completely in the 2-2.9 and 3-6 mm follicles. As follicles grew, the number of oocytes with GV1 configurations increased and reached a maximum in the preovulatory follicles 4 hr post-hCG injection. During maturation in vivo, the number of GV1 oocytes decreased while oocytes undergoing GVBD increased. The percentage of oocytes with GV3 and GV4 configurations was constant during oocyte growth except at the 2-2.9 mm follicle stage, but these configurations disappeared completely after hCG injection. On the contrary, the in vitro maturing oocytes showed a large proportion of GV3 and GV4 configurations. There was no significant difference in distribution of chromatin configurations between the nonatretic and atretic follicles, and between oocytes with more than two layers of cumulus cells and those with less than one layer or no cumulus cells. Overall, our results suggested that (i) the GV0 configuration in porcine oocytes corresponded to the "nonsurrounded nucleolus" pattern in mice and other species; (ii) all the oocytes were synchronized at the GV1 stage before GVBD and this pattern might, therefore, represent a nonatretic state; (iii) the GV3 and GV4 configurations might represent stages toward atresia, or transient events prior to GVBD that could be switched toward either ovulation or atresia, depending upon circumstances; (iv) the in vitro systems currently used were not favorable for oocytes to switch toward ovulation (or final maturation); (v) the number of cumulus cells was not correlated with the chromatin configuration of oocytes, indicating that the beneficial effect of cumulus cells on oocyte maturation and development may simply be attributed to their presence during in vitro culture.  相似文献   

11.
Starfish oocyte meiosis provides a good system for studying the mechanism for prometaphase chromosome movement. Since a protein sharing epitopes with sperm dynein might be a force generator for mitosis, the contribution of such a protein was assessed in this movement. Specific antibodies to heavy chains (HCs) and intermediate chains (ICs) of dynein subunits were affinity-purified from whole antidynein serum. We confirmed that the oocytes contain several polypeptides identical to sperm dynein subunits. The anti-HCs binding to in situ antigen was examined in the oocytes permeabilized with detergent at appropriate stages of maturation with special reference to tubulin and chromosomes, and the meiotic apparatus-establishing process was described in terms of a force generator (oocyte dynein). Before resumption of maturation, dynein HCs were particularly associated with prophase chromosomes within the germinal vesicle (GV). After GV breakdown, there was a striking local accumulation of dynein HCs in the "fading GV" (nuclear matrix). When chromosomes were pulled toward the central area between 2 asters, dynein was accumulated at first at the presumptive equator and then moved to the poles, showing uneven localization on the meiotic spindle.  相似文献   

12.
Mouse and porcine fully grown oocytes at metaphase I(MI) were fused to one or more fully grown oocytes of the same species that contained an intact germinal vesicle (GV). In fused cells containing one GV, premature chromosome condensation (PCC) was observed. In fused cells containing more than one GV, germinal vesicle breakdown (GVBD) and PCC were delayed. Fusion of an MI fully grown oocyte with a growing oocyte resulted in rapid PCC, whereas, fusion of an MI fully grown oocyte with more than one growing oocyte resulted in neither PCC nor GVBD. Moreover, MI chromosomes formed a clump of chromatin. Results of these experiments suggest that the delay in GVBD in fusions of MI oocytes with multiple GV-intact oocytes was due to dilution of maturation promoting factor (MPF) by the cytoplasm of the GV-intact oocytes and that the cytoplasm of growing oocytes can inhibit MPF present in MI oocytes.  相似文献   

13.
Spermatozoa of Bufo bufo japonicus were briefly treated with Triton X-100 to remove their plasma membrane, and were injected into oocytes at various stages of maturation division. All the sperm injected into mature coelomic eggs transformed into pronuclei and synthesized DNA, as a normally fertilizing sperm does. The sperm injected into oocytes at the germinal vesicle (GV) stage did not show any change as long as the GV remained intact. In the oocytes which were induced to mature by progesterone, the injected sperm displayed characteristic features in synchrony with those of the resident female nucleus. These included the formation of several sperm-derived chromosomes in association with multipolar spindles in the oocytes from the stage of the germinal vesicle breakdown to the first polar spindle; the appearance of swollen, vesicular nuclei without concomitant DNA synthesis in those at the stage of the first polar body emission; and the reappearance of the condensed chromosomes with giant spindles in those at the stage of the second meiotic metaphase. Pricking of these last oocytes induced the formation of several male pronuclei and DNA synthesis. These results prove that the injection of detergent-treated sperm employed here provides an excellent means of studying the cytoplasmic state that regulates nuclear behavior.  相似文献   

14.
Histological examination of gonadotrophin stimulated Macaca fascicularis ovaries removed at mid-follicular phase showed that germinal vesicles (GV) could exhibit different configurations in follicles greater than 1000 microns in diameter. We describe 3 types of nuclear organization called GV1 (dispersed and filamentous chromatin), GV2 (clumped and filamentous chromatin) and GV3 (perinucleolar chromatin condensation). Gonadotrophin stimulation and follicular atresia induced modifications in GV chromatin dispersion. Such modifications were of a higher degree in the case of atresia which could even induce in vivo germinal vesicle breakdown (GVBD). Our findings were as follows. The frequency of GV1 oocytes was always low, but was higher in healthy than in atretic follicles, whereas GV3 oocytes were more frequent in atretic compared to healthy follicles; the oocytes which resumed meiosis in vitro were most probably those which were at the GV3 stage at the time of recovery; GV nuclear changes were related to follicle size and quality, but not to oocyte size. The mean follicular size increased from GV1 to GV3 oocyte stages whatever the follicle quality; the nucleus was often observed in a peripheral position even in GV1 oocytes; zona pellucida appearance was related to GV stage and follicle quality and was more often observed to be abnormal or absent in case of GV3 oocytes included in atretic follicles. Oocyte nuclear modifications therefore appear to be a prerequisite to resumption of meiosis.  相似文献   

15.
Porcine ovarian oocytes, isolated from follicles of 5 mm in diameter (large oocytes), were fused either together or with oocytes isolated from follicles of 0.5 mm in diameter (small oocytes). In giant cells composed of two large oocytes (control) germinal vesicle breakdown (GVBD) occurred and two metaphase I chromosome sets (M I) were observed 24 to 30 h after fusion. By contrast, in giant cells composed of one large and one small porcine oocyte, both germinal vesicles (GVs) remained well conserved after 24-30 h of culture. An identical situation was observed after fusion and cultivation of small porcine and large mouse oocytes isolated from preovulatory follicles. The results demonstrate the presence of inhibiting activity in the ooplasm of small porcine oocytes that prevents nuclear maturation of large porcine and mouse oocytes fused to them. This maturation inhibiting activity can be overcome by preincubating large porcine oocytes for more than 14 h before fusion with small oocytes. During preincubation the ooplasm produces sufficient amount of maturation promoting factor (MPF) to overcome the inhibiting activity present in small porcine oocytes thus inducing GVBD and chromatin condensation both in small and large oocytes.  相似文献   

16.
Configuration of germinal vesicle (GV) chromatin has been studied and found correlated with the developmental competence of oocytes in several mammalian species. A common feature in the configuration of GV chromatin in the species studied so far is that the diffuse chromatin (the so called "NSN" pattern) condenses into a perinucleolar ring (the so called "SN" configuration) with follicular growth. However, no study has been published on the configuration of GV chromatin in the goat. Nor is it known whether the perinucleolar ring of condensed chromatin (CC) in an oocyte represents a step toward final maturation or atresia. Changes in configurations of GV chromatin and RNA synthesis during goat oocyte growth, atresia and maturation in vivo and in vitro were investigated in this study. Based on both the size of nucleoli and the degree of chromatin condensation, the GV chromatin of goat oocytes was classified into GV1 characterized by large nucleoli and diffuse chromatin, GV2 with medium-sized nucleoli and condensed net-like (GV2n) or clumped (GV2c) chromatin, GV3 with small nucleoli and net-like (GV3n) or clumped (GV3c) chromatin, and GV4 with no nucleolus but clumped chromatin. The results showed that (i) the configurations of GV chromatin in the goat differ from those of other species in that the chromatin did not condense into a perinucleolar ring; (ii) most of the goat oocytes are synchronized at the GV3n configuration before GVBD; (iii) the GVn pattern might represent a healthy state, but the GVc an atretic state; (iv) in both goats and mice, the GC-specific (Chromomycin A3, CMA3) and the AT-specific (Hoechst 33342) fluorochromes followed the same pattern of distribution in GV chromatin; (v) the nucleolar size decreased significantly with oocyte growth and maturation in vivo and in vitro; and (vi) goat oocytes began GVBD at 8 hr and had completed it by 20 hr after onset of estrus. The peculiar configuration of GV chromatin of goat oocytes can be a useful model for studies of morphological and functional changes of different nuclear compartments during the cell cycle and cell differentiation, and the functional differentiation between GV3n and GV3c might be used for reference to the question whether the "SN" configuration in other species inclines toward ovulation or atresia.  相似文献   

17.
As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein γ-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development.  相似文献   

18.
Kobayashi M  Sato K 《Human cell》2008,21(1):7-11
We investigated the mitochondrial behavior, localization and heteroplasmy in reconstituted oocytes derived from germinal vesicle (GV) transfers. The karyoplast containing the GV nucleus and the ooplast (enucleated oocyte) were prepared from GV oocytes derived from B6D2F1 mice. Mitochondria in the karyoplast and ooplast were labeled with MitoRed (Dojindo Laboratories, Kummoto, Japan) and MitoTracker Green (Molecular Probes, Eugene, OR, USA), respectively. After labeling the mitochondria, the karyoplast and ooplast were paired and fused. The mitochondrial behavior in fused (reconstituted) oocytes during in vitro maturation and preimplantation development were observed using confocal laser-scanning microscopy. In reconstituted oocytes that had reached to the M-II stage, mitochondria localized and concentrated in the hemispherical area of oocytes containing the M-II spindle. We showed that the two types of mitochondria derived from the GV donor and the recipient in reconstituted oocytes exhibit similar behavior to the normal oocyte during meiosis, and that the mitochondrial heteroplasmy of these oocytes did not influence their in vitro maturation and preimplantation development.  相似文献   

19.
Phosphorylation modification of core histones is correlated well with diverse chromatin-based cell activities. However, its distribution pattern and primary roles during mammalian oocyte meiosis are still in dispute. In this study, by performing immunofluorescence and Western blotting, spatial distribution and temporal expression of phosphorylated serine 10 or 28 on histone H3 during porcine oocyte meiotic maturation were examined and distinct subcellular distribution patterns between them were presented. Low expression of phosphorylated H3/ser10 was detected in germinal vesicle. Importantly, following gradual dephosphorylation from germinal vesicle (GV) to late germinal vesicle (L-GV) stage, a transient phosphorylation at the periphery of condensed chromatin was re-established at early germinal vesicle breakdown (E-GVBD) stage, and then the dramatically increased signals covered whole chromosomes from pre-metaphase I (Pre-MI) to metaphase II (MII). Similarly, hypophosphorylation of serine 28 on histone H3 was also monitored from GV to E-GVBD, indicating dephosphorylation of histone H3 maybe involved in the regulation of meiotic resumption. Moreover, the rim staining on the chromosomes and high levels of H3/ser28 phosphorylation were observed in Pre-MI, MI, and MII stage oocytes. Based on above results, such stage-dependent dynamics of phosphorylation of H3/ser 10 and 28 may play specific roles during mammalian oocyte maturation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号