首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic analysis and molecular characterization of plasmid deoxyribonucleic acid (DNA) was performed in a toxigenic isolate of Staphylococcus aureus strain DU4916. Elimination, transduction, and transformation experiments provided us with a series of derivatives similar except for the presence or absence of genes mediating resistance to penicillin (penr), methicillin (mecr), and tetracycline (tetr) and enterotoxin type B (SEB) production (entB+). The derivatives were examined for the presence of a plasmid species which encodes for SEB production. Two distinct species of covalently closed circular DNA of about 2.8 X 10(6) and 0.75 X 10(6) daltons were identified in an ethidium bromide-cured, penicillinase-negative (pens) isolate, SN109 (mecr tetr emtB+). Further segregation of either methicillin resistance or tetracycline resistance or of both together resulted in the loss of SEB production and the disappearance of both plasmids. Transduction from strain SN109 showed that determinants for tetracycline resistance are carried by the 2.8 X 10(6) dalton plasmid. Transformation with covalently closed circular DNA from strain SN109 yielded mecs tetr entB- transformants harboring the tetracycline resistance plasmid alone and mecr tetr entB+ transformants harboring both the tetracycline resistance and the 0.75 X 10(6)-dalton plasmid. Further segregation of methicillin resistance in transformants was not associated with any change in plasmid DNA. The results indicate that a genetic determinant for SEB production is carried by the 0.75 X 10(6)-dalton plasmid. It is possible, however, that this plasmid cannot be maintained in the host independently from the tetracycline resistance plasmid. Methicillin resistance in the strains examined could not be ascribed to any of the covalently closed circular DNA components resolved in strain DU4916.  相似文献   

2.
Three-factor genetic crosses performed by transformation have shown that the methicillin resistance determinant of Staphylococcus aureus strain DU4916 (the mec-4916 marker) is linked to a novobiocin resistance (Novr) marker (nov-142) and mutational sites affecting pyrimidine (pyr-141), purine (pur-102), and histidine (hisG15) biosynthesis in S. aureus strain 8325. The linkage group thus defined is pyr-141-hisG15-nov-142-pur-102-mec-4916. Phage 80alpha previously propagated on a novobiocin-resistant, methicillin-sensitive (Mecs) 8325 strain was used to infect 21 novobiocin-sensitive, methicillin-resistant clinical isolates (including strain DU4916). Among the novobiocin-resistant transductants so obtained from each recipient, between 1 and 5% were methicillin sensitive (reflecting cotransduction of Novr and Mecs). These results are consistent with the genetic determinant of methicillin resistance having a single chromosomal locus in most, if not all, strains of S. aureus.  相似文献   

3.
It has been proposed that in addition to production of a penicillin-binding protein with low affinity for beta-lactam antibiotics, control of autolysin activity is involved in the mechanism of staphylococcal methicillin resistance. A homogeneous methicillin-resistant Staphylococcus aureus strain (DU4916) had lower rates of unstimulated, NaCl- and Triton X-100-stimulated autolysis, and daptomycin (LY146032)-induced lysis than a heterogeneous methicillin-resistant strain (DU4916-K7) and a methicillin-susceptible strain (DU4916S) derived from DU4916.  相似文献   

4.
Resistance to methicillin was transduced by phage 80 or 53 from two naturally occurring methicillin-resistant strains of Staphylococcus aureus to methicillin-susceptible recipient strains at frequencies of 10−7 to 10−9. Ultraviolet irradiation of transducing phage and posttransductional incubation at 30 C were essential for useful frequencies of transduction. Effectiveness as a recipient for this transduction was highly specific. Strain NCTC 8325 (PS47) in its native state was an ineffective recipient but became effective after it had received by transduction one of several penicillinase plasmids. This acquired effectiveness was retained in most cases after elimination of the plasmid by ethidium bromide treatment. Like the donor strain, the progeny were heterogeneous in the degree of their resistance to methicillin, which was expressed by a higher proportion of cells as the temperature of incubation was lowered from 37 to 30 C. Separate transductants varied widely in the degree of resistance acquired by transduction. Methicillin resistance was stable in the donor and transductant strains. We favored the interpretation that methicillin resistance in our strains was determined by a single chromosomal gene, although the possibility that it was determined by two or more closely linked genes could not be excluded.  相似文献   

5.
Role of host factors in the regulation of the enterotoxin B gene.   总被引:11,自引:5,他引:6       下载免费PDF全文
The levels of staphylococcal enterotoxin B (SEB) produced by various naturally occurring toxinogenic strains of Staphylococcus aureus are highly variable. The SEB gene (seb) from a high-producer strain, S6, has previously been cloned and characterized. Cloning and nucleotide sequence analysis of the upstream region of the seb gene from DU4916 and COL (medium- and low-level toxin-producer strains, respectively) showed that their sequence was identical to that of the seb gene from strain S6. Strains carrying the cloned seb gene from DU4916 and COL produced similar levels of SEB protein and mRNA to those produced by strains carrying the cloned seb gene from strain S6. An RNA encoded by the delta-lysin gene (hld) has been shown to regulate the genes for a number of extracellular proteins, including SEB. Northern (RNA) blot analysis showed that variable levels of hld RNA were present in various SEB-producer strains, with the order being S6 greater than DU4916 greater than COL. Our results suggest that differences in host factor(s), including the hld RNA, are responsible for the production of different amounts of SEB by many naturally occurring strains.  相似文献   

6.
Competitive hybridization was used to detect the deletion of chromosomal DNA accompanying the loss of resistance to methicillin (and concomitantly, to cadmium, mercury and tetracycline) from a clinical strain of methicillin-resistant Staphylococcus aureus (MRSA). The method was also used to screen a partial plasmid library of chromosomal HindIII fragments from the MRSA strain. Eight recombinant plasmid clones were identified as containing DNA included in the deletion. These clones were used as probes to screen a phage library of the total DNA of the same MRSA strain, resulting in the isolation of overlapping recombinant phage clones carrying 24 kb of the deleted DNA. Two of the cloned HindIII fragments were associated closely with methicillin resistance, as shown by probing DNA from an independent methicillin-sensitive/resistant transduced strain pair and from two MRSA strains following growth in the presence of high concentrations of methicillin. The endonuclease map of the cloned DNA indicates the presence of four copies of a direct repeat less than 1 kb in size. The map is also consistent with the presence in the chromosome of sequences for mercury resistance (mer A mer B) and for tetracycline-resistance plasmid pT181.  相似文献   

7.
A recombinant plasmid carrying the recA gene of Aeromonas caviae was isolated from an A. caviae genomic library by complementation of an Escherichia coli recA mutant. The plasmid restored resistance to both UV irradiation and to the DNA-damaging agent methyl methanesulfonate in the E. coli recA mutant strain. The cloned gene also restored recombination proficiency as measured by the formation of lac+ recombinants from duplicated mutant lacZ genes and by the ability to propagate a strain of phage lambda (red gam) that requires host recombination functions for growth. The approximate location of the recA gene on the cloned DNA fragment was determined by constructing deletions and by the insertion of Tn5, both of which abolished the ability of the recombinant plasmid to complement the E. coli recA strains. A. caviae recA::Tn5 was introduced into A. caviae by P1 transduction. The resulting A. caviae recA mutant strain was considerably more sensitive to UV light than was its parent. Southern hybridization analysis indicated that the A. caviae recA gene has diverged from the recA genes from a variety of gram-negative bacteria, including A. hydrophila and A. sobria. Maxicell labeling experiments revealed that the RecA protein of A. caviae had an Mr of about 39,400.  相似文献   

8.
The prophage lambdac1857 was inserted into the bfe gene located near rif (the structural gene for the beta subunit of deoxyribonucleic acid [DNA]-dependent ribonucleic acid polymerase) on the Escherichia coli chromosome. Induced lysates (low-frequency transducing lysates) of such a lysogen contained defective lambda phage particles (lambdadrif+) that can specifically transduce the wild-type rif+ gene. Upon transduction into a recipient strain carrying recA, heterogenotes harboring both the wild-type and the mutant rif genes were isolated. Rec+ derivatives of these heterogenotes produce high-frequency transducing lysates that contain lambdadrif+ and normal active phages at a ratio of 1 to 2. The results of marker rescue experiments and of density determination with several transducing phages indicate that most of the late genes are deleted and replaced by a segment of the chromosomal DNA carrying the bfe-rif region. The length of the chromosomal segment seems to vary between approximately 0.5 and 0.6% of the total bacterial DNA among the three independently isolated lambdadrif+ phages. Electron microscopy of heteroduplex DNA consisting of one strand from lambdadrif+-6 and the other from lambdaimm-21 phages directly confirmed that most of the phage DNA of the "left arm" was replaced by the bacterial DNA. The heteroduplex study also demonstrated that the integration of prophage lambda into the bfe region occurred at the normal cross-over point within the phage attachment site.  相似文献   

9.
10.
J T Singer  C Ma    K J Boettcher 《Applied microbiology》1996,62(10):3727-3731
A defect in generalized recombination has prevented the use of marker exchange for the construction of specific chromosomal mutations in the marine fish pathogen Vibrio anguillarum 775. Through the use of large segments of homologous DNA, we were successful in overcoming this defect and used marker exchange to construct a recA mutant of V. anguillarum H775-3. A recombinant cosmid carrying the recA gene of V. anguillarum 775 in the center of a 25-kb cloned DNA insert was isolated by complementation of methyl methanesulfonate (MMS) sensitivity in Escherichia coli HB101. The recA gene was inactivated by inserting a kanamycin resistance gene into recA, and the mutant gene was subsequently introduced into V. anguillarum H775-3 by conjugal mobilization. Isolation of recombinants between cosmid-borne recA::kan sequences and chromosomal DNA was facilitated by the introduction of an incompatible plasmid, and Southern hybridization was used to verify the presence of recA::kan in the chromosomal DNA of the recA mutant. V. anguillarum carrying recA::kan was considerably more sensitive to UV radiation and to MMS than was its parent, and near wild-type levels of resistance to MMS and UV light were restored by introduction of cloned recA genes from both E. coli and V. anguillarum. These results indicate that recA is required for DNA repair in V. anguillarum and demonstrate the utility of this modified marker exchange technique for the construction of mutations in this economically important fish pathogen.  相似文献   

11.
Transforming activity of plasmid and chromosomal DNA inEscherichia coli   总被引:1,自引:1,他引:0  
An auxotrophic strain ofEscherichia coli with therecB recC sbcB genotype was transformed by chromosomal DNA of the prototrophic strain and by plasmid DNA carrying genes for antibiotic resistance (R1drd 19). The donor plasmid DNA obtained by cell lysis in the presence of Triton X-100 and subsequent centrifugation in a caesium chloride-ethidium bromide gradient was shown to have a circulaf molecule and to retain its completeness after penetration into the recipient. Experiments with mixtures or plasmid and chromosomal DNA indicate a competition between these two DNA types during the transformation reaction in the given system.  相似文献   

12.
A methicillin-susceptible, novobiocin-resistant strain of Staphylococcus aureus (RN2677; methicillin MIC, 0.8 micrograms/ml) was transformed with DNA prepared from highly and homogeneously methicillin-resistant S. aureus strains (methicillin MIC, greater than or equal to 400 micrograms/ml) or from heterogeneous strains in which the majority of cells had a low level of resistance (methicillin MIC, 6.3 micrograms/ml). All methicillin-resistant transformants showed low and heterogeneous resistance (methicillin MIC, 3.1 micrograms/ml) irrespective of the resistance level of DNA donors. All transformants examined produced normal amounts of the low-affinity penicillin-binding protein (PBP) 2a, and methicillin resistance and the capacity to produce PBP 2a showed the same degree of genetic linkage to the novobiocin resistance marker with both homogeneous and heterogeneous DNA donors. Next, we isolated a methicillin-susceptible mutant from a highly and homogeneously resistant strain which had a Tn551 insertion near or within the PBP 2a gene and thus did not produce PBP 2a. With this mutant used as the recipient, genetic transformation of the methicillin resistance gene was repeated with DNA isolated either from highly and homogeneously resistant strains or from heterogeneous (low-resistance) strains. All transformants obtained expressed high and homogeneous resistance and produced PBP 2a irrespective of the resistance level of the DNA donors. Our findings suggest that (i) the methicillin resistance locus is identical to the structural gene for PBP 2a, (ii) although the ability to produce PBP 2a is essential for resistance, the MICs for the majority of cells are not related to the cellular concentration of PBP 2a, and (iii) high MICs and homogeneous expression of resistance require the products of other distinct genetic elements as well.  相似文献   

13.
An important attribute that contributes to the virulence of Neisseria gonorrhoeae is its phenotypic variability, which is based on recombination within complex gene families in the genome. In this study we report on the in vivo amplification of large segments of the genome and the existence of circular DNA intermediates in the cell, which might help to explain the evolution of these gene families and provide possible clues as to how genetic variability is maintained. Using an inserted chromosomal marker (cat) in the N. gonorrhoeae MS11 genome that confers low-level resistance to chloramphenicol (Cm), we isolated variants that express resistance to high levels of Cm. Genetic analysis revealed that virtually all variants harboured single or multiple tandem amplifications of the respective genome segments carrying the cat insert. This process occurred independently of both the location of the cat insertion site and of the presence of a functional recA gene. Analysis of the genetically well characterised pilC region revealed a head-to-tail orientation of the amplified segments, with the junctions being located within direct repeats. Identical junctions were detected in extra-chromosomal circular DNA molecules isolated from non-selected wild-type and recA strains, suggesting that both types of structure arise by related processes. The existence of DNA circles was shown by their banding behaviour in caesium chloride/ethidium bromide density centrifugation and their resistance to digestion by exonuclease. The possible roles of such circles in processes such as pilin gene recombination, chromosomal gene amplification and genetic transformation are discussed.  相似文献   

14.
By use of the Bacillus subtilis bacteriophage cloning vehicle phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages phi 105Rec phi 1 (3.85-kilobase insert) and phi 105Rec phi 4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE+ strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage phi 105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either phi 105Rec phi 1 or phi 105Rec phi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages phi 105Rec phi 1 and phi 105Rec phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA+ gene product antibodies. Collectively, these data demonstrate that the recE+ gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination.  相似文献   

15.
In mini-Mu-duction, segments of host DNA bracketed between two copies of an internally deleted Mu phage (a mini-Mu) can be packaged within Mu phage particles. Upon infection of a second host strain, the DNA injected by these particles can insert into the chromosomal DNA in a reaction catalyzed by the phage A gene product (transposase), which is independent of homologous recombination. This results in a partially diploid host strain in which the duplicated host DNA is bracketed by two copies of the mini-Mu phage (Faelen et al., Mol. Gen. Genet. 176:191-197, 1979). The frequency of mini-Mu-duction reported previously was low (10(-8) to 10(-9) per recipient cell) thus limiting its use to rather stable mutational lesions. I have increased the frequency of mini-Mu-duction 10- to 100-fold by use of a helper phage lacking the kil gene and by UV irradiation of the phage stocks. I have also shown that mini-Mu-duction is a reliable complementation assay in rec+ as well as recA recipient strains. This genetic complementation test does not require prior gene localization and (due to the extended host range of phage Mu) should be applicable to many enterobacterial species.  相似文献   

16.
Transposon Tn3 was inserted into a tRNA operon of the amber suppressor Su+2 on a transducing phage (lambda hcI857nin5pSu+2) by selecting phages with ampicillin resistance and Su- phenotypes. In a strain thus obtained, Tn3 was inserted between the promoter and the first tRNA gene of the operon, which was determined by DNA sequencing. The Su+2 tRNA operon on the transducing phage consisted of two tRNA genes for tRNA(Met) and Su+2 tRNA(2Gln), which was a deletion derivative of the supB-E tRNA operon of E. coli containing seven tRNA genes in the order of promoter-Met-Leu-Gln1-Gln1-Met-Gln2-Gln2. Proliferating the lambda hcI857nin5pSu+2::Tn3 in E. coli cells, a number of phages which had lost Tn3 were isolated, and their tRNA gene compositions as well as the DNA structures of the tRNA operon were analyzed. In many cases the tRNA genes which had been deleted from the original transducing phage were regained from the chromosomal supB-E operon. Thus the loss of Tn3 from the phages was not due to excision of the transposon but due to the replacement of a portion of the tRNA operon, including Tn3, with the host homologous region that did not contain Tn3. This type of replacement takes place rather efficiently as a consequence of Tn3 insertion, owing to the general recombination occurring between homologous tRNA genes of phage and host chromosomes in the presence of either host recA or phage red. No such enhanced recombination in a similar cross between phage and host chromosomes was observed with the Tn3 present in the trans position on an independent plasmid. We conclude that inserting Tn3 in cis promotes general recombination in the neighboring regions. Possible mechanisms for this new type of genetic effect of Tn3 are discussed. During the course of this study, a natural defective mutation (T11) was also detected in one of the duplicated tRNA(2Gln) genes in an E. coli K12 strain we used.  相似文献   

17.
Growth of phage phi105 and its deoxyribonucleic acid (DNA) was studied in radiation-sensitive mutants of Bacillus subtilis. The recA gene is required for optimal prophage induction with mitomycin C and for infectivity of prophage DNA. rec B gene is required for marker rescue from mature DNA. The importance of bacterial genes for phage DNA activity seems to depend on phage DNA structure.  相似文献   

18.
The Ref activity of phage P1 enhances recombination between two defective lacZ genes in the Escherichia coli chromosome (lac- x lac- recombination). Plasmid recombination, both lac- x lac- and tet- x tet-, was measured by transformation of recA strains, and was also assayed by measurement of beta-galactosidase. The intracellular presence of recombinant plasmids was verified directly by Southern blotting. Ref stimulated recombination of plasmids in rec+ and rec(BCD) cells by 3-6-fold, and also the low level plasmid recombination in recF cells. RecA-independent plasmid recombination, either very low level (recA cells) or high level (recB recC sbcA recA cells), was not stimulated. Ref stimulated both intramolecular and intermolecular plasmid recombination. Both normal and Ref-stimulated lac- x lac- chromosomal recombination, expected to be mostly RecBC-dependent in wild-type bacteria, were affected very little by a recF mutation. We have previously reported Ref stimulation of lac- x lac- recombination in recBC sbcB bacteria, a process known to be RecF-dependent. Chromosomal recombination processes thought to involve activated recombination substrates, e.g., Hfr conjugation, P1 transduction, were not elevated by Ref activity. We hypothesize that Ref acts by unknown mechanisms to activate plasmid and chromosomal DNA for RecA-mediated recombination, and that the structures formed are substrates for both RecF-dependent (plasmid, chromosomal) and Rec(BCD)-dependent (chromosomal) recombination pathways.  相似文献   

19.
20.
We report a simple in vivo technique for introducing an antibiotic resistance marker into phage lambda. This technique could be used for direct selection of lysogens harboring recombinant phages from the Kohara lambda bank (a collection of ordered lambda clones carrying Escherichia coli DNA segments). The two-step method uses homologous recombination and lambda DNA packaging to replace the nonessential lambda DNA lying between the lysis genes and the right cohesive (cos) end with the neomycin phosphotransferase (npt) gene from Tn903. This occurs during lytic growth of the phage on a plasmid-containing host strain. Neomycin-resistant (npt+) recombinant phages are then selected from the lysates containing the progeny phage by transduction of a polA1 lambda lysogenic host strain to neomycin resistance. We have tested this method with two different Kohara lambda phage clones; in both cases, neomycin resistance cotransduced with the auxotrophic marker carried by the lambda clone, indicating complete genetic linkage. Linkage was verified by restriction mapping of purified DNA from a recombinant phage clone. We also demonstrate that insertion of the npt+ recombinant phages into the lambda prophage can be readily distinguished from insertion into bacterial chromosomal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号