首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dense swarms of Daphnia longispina (up to 4000 animals l–1) were recorded along the littoral zone in a lake where Chaoborus flavicans is considered the main predator. D. longispina coexisted with D. pulex, but there were no D. pulex in the littoral swarms. Swarms were less dense at night (about 1/10 the density), and D. longispina exhibited diel horizontal migrations by aggregating in the littoral during the day and spreading out at night. Laboratory experiments showed that Chaoborus capture efficiency on juvenile daphnids was higher in the light compared to darkness, and that Daphnia exhibited a behavioural response to water that had previously contained Chaoborus. We conclude that predation from Chaoborus can be an important factor affecting the distribution patterns of Daphnia observed in this lake. The behavioural experiments indicated that this influence might be partly mediated by chemical agents.  相似文献   

2.
Luc De Meester 《Hydrobiologia》1991,225(1):217-227
Daphnia magna clones, isolated from different natural populations, were inbred and crossbred. Some aspects of the heredity of the phototactic behaviour, quantified by an index, were analysed. Heritability in the broad sense was determined for several assemblages of clones through calculation of the clonal repeatability. Heritability sensu strictu was determined by offspring-parent regressions. Frequency distributions of a phototactic index of several inbred and crossbred families are given.The results indicate a significant contribution of additive genetic variance to the total phenotypic variance. Comparison of heritability estimates suggests an important genetic interaction component.Some implications of these results on the variability of vertical migration patterns in natural populations are discussed.  相似文献   

3.
Light and nutrient availability change throughout dinoflagellate diel vertical migration (DVM) and/or with sub-population location in the water column along the west Florida shelf. Typically, the vertical depth of the shelf is greater than the distance a sub-population can vertically migrate during a diel cycle, limiting the ability of a sub-population to photosynthetically fix carbon toward the surface and access nutrients sub-surface. This project investigated changes of Karenia brevis (C.C. Davis) G. Hansen et Moestrup intracellular carbon, nitrogen, internal nitrate (iNO3), free amino acid (FAA), and total lipid concentrations in high-light, nitrate-replete (960 μmol quanta m−2 s−1, 80 μM NO3), and high-light, nitrate-reduced (960 μmol quanta m−2 s−1, <5 μM NO3) mesocosms. The nitrate-reduced mesocosm had a slowed cell division rate when compared to the nitrate-replete mesocosm. Minimum intracellular carbon, nitrogen, iNO3, FAA, and total lipid concentrations during the largest surface sub-population aggregations led to the conclusion that daughter cells resulting from cell division received unequal shares of the parental resources and that this inequality influenced migration behavior. Nutrient reduced daughter cells were more strongly influenced by light and phototaxis for carbon production than their replete same cell division sister cells during vertical migration thus rapidly increasing the fulfillment of constituents through photosynthesis. Vertical migration was consistent with an optimization scheme based on threshold limits through utilization or formation of photosynthate. We propose a simplified conceptual model describing how K. brevis is transported along the benthos of the west Florida shelf from off-shore to on-shore. Dynamic carbon thresholds are also suggested for future DVM modeling efforts on K. brevis populations transported between nitrogen replete and nitrogen reduced environmental conditions.  相似文献   

4.
Diel vertical migration (DVM) and diel feeding rhythm of two cladocerans, Daphnia longispina and Bosmina coregoni were investigated at the pelagic area of Lake Toya (Hokkaido, Japan) in May, August and October 1992. Both species performed nocturnal DVM. The amplitude of DVM, however, became smaller from May to October. Such seasonal variations in DVM could not be explained by light penetration and/or water temperature. The two species had a clear feeding rhythm; they fed at night in May and October but also after sunrise in August. These feeding rhythms appeared to be related to the light-dark cycle, but were not necessarily associated with their DVM. We suggest that the diel feeding rhythm and DVM are regulated independently by light cues.  相似文献   

5.
The vertical distribution of the tubificid worm Rhyacodrilus hiemalis Ohtaka, the numerically dominant species of oligochaete in the littoral of Lake Biwa, was studied with special reference to seasonal vertical migration in the lake sediment. Monthly collections of lake sediment cores were made using PVC tubes. Core sections of sample sediments ranged from 76 to 117 cm. The vertical distribution of the worms showed no diurnal variation; therefore diel vertical migration was not evident. Seasonal downward migration started in April, and upward migration started in October. From December to March, almost all worms remained in the near-surface sediment layer (surface to 30 cm deep), while from July to September almost all worms remained deeper than 30 cm. However, few individuals migrated deeper than 90 cm. No discontinuous layers were found in grain size composition, water content, loss on ignition, particulate carbon, nitrogen or phosphorus. In deep sediment there was no free oxygen, as evidenced by negative ORP values. For 4 months in summer, R. hiemalis aestivated, probably utilizing anaerobic respiration. It appeared that R. hiemalis moved deeper in the sediment in response to sediment temperature, because sediment temperatures in the deep layers seemed to converge at around 20–21 °C in the summer months. The life history traits of seasonal vertical migration and summer aestivation perhaps arose as an adaptation to the climatic conditions accompanying the geographical origin of R. hiemalis, and they also serve to minimize predation risk during summer when most invertebrate predatory fishes are active.  相似文献   

6.
Diurnal vertical migration (DVM) of Daphnia hyalina in Lake Bled was most intense during summer stratification. The extent of DVM varied with the size of the animal and its reproductive state. Migration distances were shortest in immature specimens and longest in ovigerous females. During daytime, ovigerous females stayed deeper in the water column than females without ova or immatures. The daytime temperature of water at the median depth of the ovigerous females did not exceed 10 °C, even in the warmest season. At night they migrated upward to an environment which was warmer by as much as 9 °C.Laboratory observations indicate that specimen's size and water temperature determine the velocity of passive sinking, such that morning descent of the different groups of Daphnia can be explained by passive sinking alone.Our hypothesis is that the distribution of different groups of D. hyalina in Lake Bled is influenced by two types of predators: fish (Perca fluviatilis L. and Rutilus rutilus (L.)) and larvae of Chaoborus flavicans (Meig.), the latter appearing in the epilimnion during the night. Fish predation has a key-role at the beginning of thermal stratification. Supposing that in spring the gene pool of Daphnia consists of a mix of different genotypes, distributed at different depths during the day, fish predation combined with a presence of fish chemicals favored genotypes with a lower day-depth during the spring/summer period.  相似文献   

7.
Tropical reef fishes are exposed to high levels of damaging ultraviolet radiation. Here we report the widespread distribution of both UVA- and UVB-absorbing compounds in the epithelial mucus of these fishes. Mucus from 137 reef fish species was examined by spectrophotometry and 90% were found to have strong absorbance peaks between 290 and 400nm. Most fish species (78%) had more than one peak, that suggests a broad-band ultraviolet screening function for their mucus. Thalassoma duperrey, a tropical wrasse, was able to alter the absorbance of its epithelial mucus in response to both naturally and experimentally manipulated UV regimes. Visual modeling suggests that a fish with UV vision, such as Dascyllus albisella, could detect the changes in mucus spectra of T. duperrey that occurred in these experiments.  相似文献   

8.
Neither Daphnia hyalina, Daphnia cristata, nor Daphnia cucullata vertically migrated in Lake Mikoajskie and Lake Majcz. We suggest that even under strong fish predation pressure there is no reason to migrate when seston is relatively homogenously distributed throughout the water column.  相似文献   

9.
A greenhouse experiment was conducted to investigate whether small differences in UV-B irradiance would lead to changes in competition between cocksfoot (Dactylis glomerata L. cv. Athos) and white clover (Trifolium repens L. cv. Mervi). Plants were grown in greenhouses covered with different thicknesses of UV-transmittant plexi (3 and 5 mm) resulting in 82 % and 88 % of ambient UV-B radiation. Aboveground biomass was harvested at 4-week intervals and the vertical distribution of biomass, leaf thickness and specific leaf area were determined. Tillering, stubble and root biomass and crop height were also measured. There was only one significant effect: at 88 % of ambient UV-B radiation a larger fraction of the biomass was present in the lower layers and a smaller fraction was present in the upper layers.  相似文献   

10.
The pelagic amphipod, Hyalella montezuma, migrates vertically into the surface waters at twilight in Montezuma Well, Arizona, USA despite the absence of fish predators or thermal stratification. We suggest that a persistent, dense, neustonic algal assemblage may provide a food resource incentive for the twilight ascent.  相似文献   

11.
Migrations of Daphnia longispina were studied in a small humic lake with an exceptionally shallow oxic epilimnion. Horizontal distributions showed clear avoidance of the shoreline, which might be explained by the lower density of predators (Chaoborus sp. and Notonecta sp.) in the central parts of the lake. In early summer all size classes of D. longispina exhibited upward nocturnal vertical migration, descending to the upper hypolimnion in daytime. Later in summer, when the nocturnally migrating Chaoborus sp. had grown large enough to graze on small Daphnia, the latter seemed to shift towards twilight migration. However, large Daphnia individuals showed no synchronized migration; rather their bimodal vertical distributions suggested asynchronous vertical migration. Large individuals showed a particular tendency to concentrate near to the oxycline, close to the dense phytoplankton and bacteria populations in the upper part of the anoxic hypolimnion. According to vertical trap experiments, large D. longispina visited the anoxic hypolimnion and might harvest its abundant food resources. The high haemoglobin content of large individuals seems a specific adaptation to allow access to low oxygen water and hence to maximize grazing potential, in both epi- and hypolimnion, and minimize predation pressure. By staying predominantly in cooler water near the oxycline, Daphnia might also minimize its energy consumption to adjust to low food availability while sustaining a sufficiently high population density to exploit those unpredictable short periods with abundant food which are common in small headwater lakes. It is suggested that migrations of zooplankton are a complex behavioural adaptation which may not be explained by any single factor. In humic lakes with shallow stratification, vertical migrations seem to offer particularly high potential advantages, because of the short distances between dramatically different environments in the water column. In further studies more emphasis should be placed on migrations of individuals rather than populations, and migrations should be considered as a dynamic part of the structure and function of the whole planktonic ecosystem.  相似文献   

12.
Oxygen consumption (µl/ mg dry wt. · hr–1 corrected to STP) in Chaoborus punctipennis was measured in a Gilson differential respirometer at two-hour intervals during 24-hour periods. Animals were held at controlled conditions similar to those at the time of collection. Respiration was measured under controlled temperatures and natural photoperiod. Measurements were begun about 36 hours after collection.Winter-collected animals showed a lower and more stable respiration than summer and fall-collected animals which did not differ from one another. Respiration increased with temperature becoming quite variable at 30°C where mortality was highest. Animals collected at different seasons and subjected to a variety of temperatures did not show a predictable pattern of respiration during the daily cycle under any condition tested.Since the 36-hour delay in respiration measurements could have dampened a diel cycle, oxygen consumption was determined within an hour of collection and followed for 24 hours. For this experiment animals were collected at six-hour intervals over a 24-hour period. Respiration did not show a predictable pattern of variation during the day-night cycle.This work was supported in part by a grant from Department of Interior, Office of Water Resources Research. All correspondence should be addressed to A.S. Tombes.  相似文献   

13.
Luc De Meester 《Oecologia》1989,80(1):142-144
Summary The phototactic responses of four clones of Daphnia magna were experimentally analysed. Broad-sense heritability of this behavioural character was estimated through an analysis of variance, and it was very high under the standardised experimental conditions of this study.  相似文献   

14.
The diel vertical distributions of two small copepods, Oithona similis and Oncaea curvata, were investigated at 4-h intervals over a 24-h period under fast ice near Syowa Station during continuous daylight conditions in the Antarctic mid-summer, December 1993. Oithona similis and O. curvata exhibited small-scale diel vertical migrations during the study period, in a way opposite to what is expected, i.e., remaining mostly in the upper layer during the day and moving into deeper layers at night. The nighttime descent of both species coincided with the time of disappearance of a high algal concentration at the ice–water interface during the day and an increase of the algal concentration in the mid-water layer at night. This suggests the migration behavior of the copepods was responsible for the change of food availability. The daily grazing impact of these copepods was estimated to remove one-third of the algae daily released from ice during mid-summer at Syowa Station.  相似文献   

15.
Diurnal vertical migration is a well-known phenomenon in the circadian activity rhythms of zooplankton. Our goal was to test whether negative phototaxis in Daphnia magna clone BEAK (provoked by artificially induced light stress, alternating light and dark phases in 2 h intervals), and its interference with the endogenous rhythm of diurnal vertical migration, can be automatically registered with a biomonitor. For the first time the vertical swimming behaviour of D. magna was recorded quantitatively based on non-optical data recording in a fully automated biotest system, the Multispecies Freshwater Biomonitor in a new experimental setup consisting of a column of three recording units (3-level chambers). Circadian vertical migration was clearly recorded in the 3-level chambers and the rhythm was more clear with 5 than with 1 organism per chamber. The organisms clearly responded to induced light stress with negative phototaxis, however best in larger chambers. The artificially induced rhythm was influenced by the endogenous rhythm. This approach may facilitate long-term observations of vertical swimming activity of zooplankton in the future.  相似文献   

16.
Haury  Loren R. 《Hydrobiologia》1988,167(1):335-342
Vertical distributions of six species of Pleuromamma at ten stations across the eastern North Pacific Ocean from Honolulu to San Diego were determined from oblique Longhurst-Hardy Plankton Recorder tows to 650 m (350–450 m in the California Current). Vertical resolution was 20 m below 200 m and 5–10 m above. There was considerable overlap in surface layer distributions at night among all co-occurring species; daytime distributions showed less overlap. All species generally occurred deeper both day and night as distance offshore increased. The proportion of a species' population that remained at daytime depths during the night decreased with distance offshore. Warm water species penetrated into the California Current and nearshore region to a much greater extent than cool water species entered central gyre waters.  相似文献   

17.
In lacustrine environments, little attention has been paid to small-scale interactions between zooplankton diel vertical migration (DVM) and feeding rhythms. Moreover, most of the information on in situ diel feeding and migratory rhythms is based on low sampling frequencies. The kinetics and the degree of coupling of these processes are thus only roughly known. Here, we present a study conducted on a diel cycle in Lake Geneva to establish the temporal and spatial relationships between DVM and grazing activity of the dominant planktonic crustaceans. Our methodological approach is based on reliable and frequent (every 30 minutes) sampling, and on gut fullness analysis. We test the hypothesis of temporal and spatial segregation in DVM and feeding activity of sympatric taxa to counteract resource competition. We also evaluate the variation in DVM and feeding activity between taxa, size and sexes. In Lake Geneva, the Daphnia complex of different species and size (D. hyalina × galeata) and the diaptomid (Eudiaptomus gracilis) have distinct DVM and diel feeding patterns which lead to temporal and spatial segregation. Differences arise from the amplitude and kinetics of DVM and diel feeding rhythms. A strong day/night contrast in depth distribution and feeding activity was observed for the large daphnids while the small daphnids and the diaptomids had lower amplitudes of DVM and weaker diel changes in feeding activity. Large Daphnia exhibited a bimodal feeding pattern coupled with dynamic interchange of individuals between the epi- and hypolimnetic layers at dusk and dawn. In contrast, little coupling between DVM and feeding patterns was found for the diaptomid. These distinct behaviours can be viewed as specific adaptive strategies developed by calanids and daphnids to limit interspecific competition and to compromise between avoidance of starvation in deep waters and avoidance of visual predators in surface layers. Our study supports the hypothesis of exogenous control of Daphnia DVM by the relative change in light intensity at dusk and dawn, but also suggests that small Daphnia (not large ones), are controlled by absolute light variations when this major stimulus is lacking. Our results also support the hypothesis that selective predation by fish is responsible for the observed differences in DVM and diel feeding patterns of sized-daphnids and diaptomids. Other factors explaining the coupling of DVM and feeding patterns are hunger, vertical temperature gradient and for daphnids, size. Thus, ecological plasticity in crustacean DVM and feeding patterns results from the interactive effect of multiple abiotic and biotic driving forces. Finally, our study also shows that large Daphnia have a marked contribution to the acceleration of downward nutrient fluxes in Lake Geneva, via their diurnal rhythm in feeding and vertical migration. Ecological implications of the study for lake management and sampling design of zooplankton grazing studies are also presented.
Résumé Dans les écosystèmes lacustres, les interactions à fine échelle temporelle entre les patrons diurnes de migration verticale et de broutage du zooplancton sont peu étudiées. En outre, jusq'à présent, les études ont généralement été réalisées selon des chroniques temporelles assez lâches. La cinétique et le degré d'interaction entre les patrons journaliers de migration verticale et de broutage sont donc encore mal connus. La présente étude, conduite au Lac Léman (Lac de Genéve) au cours d'un cycle nycthéméral, tente de préciser les liaisons spatiales et temporelles existant entre les migrations journalières et la consommation de phytoplancton chez les taxons de Crustacés les mieux représentés. Notre approche méthodologique repose sur une maille temporelle d'échantillonnage fine et sur l'analyse de la fluorescence du contenu stomacal. Nous testons l'hypothèse d'une ségrégation spatio-temporelle visant à réduire la compétition entre les taxons sympatriques et reposant sur des différences entre les patrons journaliers respectifs de migration et d'alimentation. Nous évaluons pour ces rhythmes d'activité les différences entre les espèces, les classes de tailles et les sexes. Au lac Léman, le complexe de différentes espèces et tailles de daphnies (Daphnia hyalina × galeata) et le diaptomide (Eudiaptomus gracilis) présentent des patrons journaliers de migration et d'alimentation distincts, assurant une ségrégation spatio-temporelle. Les différences proviennent de variations dans la cinétique et l'amplitude des migrations et dans les niveaux d'alimentation. Les grandes daphnies affichent un fort contraste jour/nuit dans leur répartition verticale et leur état de réplétion, tandis que les petites daphnies et les diaptomides présentent une faible amplitude de migration et de variations circadiennes de réplétion. Les grandes daphnies ont un rythme alimentaire bimodal couplé avec un relais dynamique des organismes entre l'épilimnion et l'hypolimnion au crépuscule et à l'aube. Chez le diaptomide, les interactions sont au contraire faibles entre les patrons de migration verticale et de réplétion. Ces différents comportements peuvent être perçus comme des stratégies adaptives spécifiques développées par les daphnies et les diaptomides pour limiter la compétition interspécifique et aboutir à un compromis satisfaisant entre l'évitement de la famine en eaux profondes et de la prédation par les poissons dans les eaux superficielles. Notre étude conforte l'hypothèse d'un contrôle exogène de la migration verticale de Daphnia par les changements relatifs de la lumière au crépuscule et à l'aube. En l'absence de ce stimulus, la répartition verticale des petites daphnies semble par contre contrôlée par les variations absolues de lumière. Nos observations confortent également l'hypothèse que la prédation sélective par les poissons est responsable des différences observées dans les patrons de migration des grandes daphnies et ceux des petites daphnies et des diaptomides. Les autres facteurs pouvant influencer les patrons de migration et d'alimentation des crustacés du Lac Léman sont la famine, le gradient thermique vertical et, chez les daphnies, la taille. En définitive, la plasticité écologique des patrons journaliers de migration et d'alimentation résulte des effets interactifs de daphnies ont un rôle très important dans le transfert des nutriments dans les couches profondes durant l'été, via leurs migrations verticales et les variations circadiennes d'activité alimentaire. Les implications écologiques pour l'aménagement lacustre et la planification des études portant sur le broutage du zooplancton sont aussi présentées.
  相似文献   

18.
The frequency of dispersal of invertebrates among lakes depends upon perspective and spatial scale. Effective passive dispersal requires both the transport of propagules and the establishment of populations large enough to be detected. At a global scale, biogeographic patterns of cladoceran zooplankton species suggest that effective dispersal among continents was originally rare, but greatly increased in the past century with expanded commerce. Genetic analysis allows some reconstruction of past dispersal events. Allozyme and mitochondrial DNA comparisons among New World and Old-World populations of several exotic cladocerans have provided estimates for likely source populations of colonists, their dispersal corridors, and timing of earlier dispersal events. Detecting the Old-World tropical exotic Daphnia lumholtzi early in its invasion of North America has allowed detailed analysis of its spatial spread. Twelve years of collection records indicate a rapid invasion of reservoirs in the United States, by both regional spread and long-distance jumps to new regions. Combining landscape features with zooplankton surveys from south-central US reservoirs revealed higher colonization rates of D. lumholtzi at lower landscape positions, a result which can be explained by either greater propagule load or by higher susceptibility of these downstream reservoirs. Because invaded reservoirs provide a source of propagules for nearby floodplain ponds, the rarity of this species in ponds suggests limitation by local environments. Such analyses of invading species over multiple spatial scales allow a better understanding of ecological processes governing invasion dynamics.  相似文献   

19.
Mesostoma lingua eats 0.8 Daphnia magna at 15 °C, and 2.04 at 30 °C. Below 0.5 Daphnia per day (D d–1) hunger occurs, at any temperature, and mortality increases sharply. The functional response curve appears to be linear, but saturation was not fully reached at 5 D d–1, the highest food level applied in the present study. All food regimes (above hunger level) and temperature regimes differed significantly from each other; factor interactions were of increasing importance at higher temperatures.Longevity, above hunger level, decreased with temperature. Peak longevity at low temperature may be weakly associated with relatively low food levels.  相似文献   

20.
The effects of surfactants, adecanol LG-294 and silicone A, on anthocyanin accumulation and the growth ofPerilla frutescens cells in suspension cultures were studied. Production of the red pigment was remarkably reduced from about 1.9 g/l to 0.4 g/l by adecanol LG-294 at 0.06 ml/l but not by silicone A up to 0.4 ml/l. Several repeated shake-flask cultures also demonstrated no adverse effects of silicone A on the metabolite accumulation by the suspended cells. Furthermore, the addition of silicone A to a culture in a stirred bioreactor produced a three-fold higher growth rate and a seven-fold increase in anthocyanin compared with surfactant-free cultures. The improvement was due to the substantial reduction or prevention of foaming and of cell adhesion to the bioreactor wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号