首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP-lowering mediator of insulin   总被引:2,自引:0,他引:2  
What appears to be a mediator of insulin action has been successfully produced in rat adipocytes plasma membrane upon its treatment with insulin at concentrations of 50-200 microunits/ml. This apparent mediator, when isolated and presented to adipocyte cells, mimics insulin action in the lowering of hormonally stimulated cAMP levels as well as in stimulating lipogenesis and antilipolysis. The cAMP-lowering activity of such a mediator can be quantitated as insulin-activity equivalents. Insulin at 200 microunits/ml causes, in terms of insulin-activity equivalents, a generation of as much as 50 times more of insulin mediator. The magnitude of amplification is even greater when the amount of insulin bound to its receptor is taken into account in this calculation. The action of insulin in the generation of cAMP-lowering mediator is abolished by the insulin antibody. Inactive insulin analogs do not effectively generate such a mediator activity. On the other hand, while the cAMP-lowering action of insulin shown in the bioassay system is completely inhibited by the insulin antibody, the action of such a mediator is only slightly inhibited by the same antibody. The mediator has a low molecular weight and attributes that resemble a peptide. It can be separated from insulin in a Sephadex G-25 column and has a molecular size smaller than the insulin A-chain but larger than ATP. The molecular weight of this mediator is similar to the insulin mediators isolated by other investigators. In view of the fact that it is small in size and mimics several actions of insulin when used in extracellular situations, its theoretical, as well as practical, implications are substantial.  相似文献   

2.
The insulin receptor: structure and function   总被引:7,自引:0,他引:7  
Promising progress in understanding the molecular basis of insulin action has been achieved by demonstrating that the insulin receptor is an insulin-sensitive tyrosine kinase. Here we discuss the structure of this receptor kinase and compare it with receptors for related growth factors. We review the known modes to regulate the receptor kinase activity, either through its autophosphorylation (on tyrosine residues) or through its phosphorylation by other kinases (on serine and threonine residues). We discuss the role of the receptor kinase activity in hormone signal transduction in light of results indicating a reduced kinase activity in insulin-resistant states. Finally, studies to identify natural substrates for the insulin receptor kinase are presented. The possible physiological role of these phosphorylated substrates in mediating insulin action is evaluated.  相似文献   

3.
The insulin-degrading enzyme (IDE) is an evolutionarily conserved enzyme that has been implicated in cellular insulin degradation, but its site of action and importance in regulating insulin degradation have not been clearly established. We addressed this question by examining the effects of overexpressing IDE on insulin degradation in COS cells, using both human IDE (hIDE) and its Drosophila homolog (dIDE). The dIDE, which was recently cloned in our laboratory, has 46% amino acid identity with hIDE, degrades insulin with comparable efficiency, and is readily expressed in mammalian cells. Transient expression of dIDE or hIDE in COS monkey kidney cells led to a 5- to 7-fold increase in the rate of degradation of extracellular insulin, indicating that IDE can regulate cellular insulin degradation. Insulin-degrading activity in the medium was very low and could not account for the difference between transfected and control cells. To further localize the site of IDE action, the fate of insulin after receptor binding was examined. The dIDE-transfected cells displayed increased degradation of prebound insulin compared to control cells. This increase in degradation was observed even when excess unlabeled insulin was added to block reuptake or extracellular degradation. These results indicate that IDE acts at least in part within the cell. The lysosomotropic agents chloroquine and NH4Cl did not affect the increase in insulin degradation produced by transfection with dIDE, indicating that the lysosomal and IDE-mediated pathways of insulin degradation are independent. The results demonstrate that IDE can regulate the degradation of insulin by intact cells via an intracellular pathway.  相似文献   

4.
Protein-tyrosine phosphatases and the regulation of insulin action.   总被引:3,自引:0,他引:3  
Protein-tyrosine phosphatases (PTPases) play an important role in the regulation of insulin action by dephosphorylating the active (autophosphorylated) form of the insulin receptor and attenuating its tyrosine kinase activity. PTPases can also modulate post-receptor signalling by catalyzing the dephosphorylation of cellular substrates of the insulin receptor kinase. Dramatic advances have recently been made in our understanding of PTPases as an extensive family of transmembrane and intracellular proteins that are involved in a number of pathways of cellular signal transduction. Identification of the PTPase(s) which act on various components of the insulin action cascade will not only enhance our understanding of insulin signalling but will also clarify the potential involvement of PTPases in the pathophysiology of insulin-resistant disease states. This brief review provides a summary of reversible tyrosine phosphorylation events in insulin action and available data on candidate PTPases in liver and skeletal muscle that may be involved in the regulation of insulin action.  相似文献   

5.
The ability of insulin to influence directly the metabolism of the mammalian brain has been evaluated with an isolated, perfused rat brain preparation. Insulin was added to the perfusion fluid or was injected into the rat from which the isolated brain preparation was subsequently made. The spontaneous electrical activity of the brain, the rate of cerebral glucose consumption and the rate of efflux of K+ from the brain were not affected by insulin. We conclude that insulin either does not act directly on the brain or that its action is very small and/or very slow in comparison with its action on other tissues. We suggest that the effects on brain metabolism reported to occur after administering insulin and glucose to the intact animal may be secondary to the large stimulation of the metabolism of the liver and/or other organs.  相似文献   

6.
Insulin is best known for its action on peripheral target tissues such as the adipocyte, muscle and liver to regulate glucose homeostasis. Insulin and its receptor are found in specific area of CNS with a variety of region-specific functions different from its direct glucose regulation in the periphery. The hippocampus and cerebral cortex distributed insulin/insulin receptor has been shown to be involved in brain cognitive functions. Previous studies about the effect of insulin on memory are controversial. In the present study, the effect of insulin microinjection into CA1 region of rat hippocampus on water maze performance has been investigated. Insulin had a discrepant effect dose dependently. The spatial learning and memory were impaired with lower dose of insulin, had not changed with intermediate doses, while they improved with higher doses. These results suggest that insulin may have a dose-dependent effect on spatial learning and memory.  相似文献   

7.
Unlike the intensive research in pursuit of understanding the molecular mechanisms of insulin signaling and resistance to its biological action associated most significantly with obesity and type 2 diabetes, the influence of the plasma membrane on insulin sensitivity has been intermittently studied over the years—mainly because it was thought that mediators of insulin action, such as the insulin receptor and the insulin-responsive glucose transporter GLUT4, localize more or less uniformly in the lipids that form cell membranes. Recent insights into membrane physiology suggest that the plasma membrane impacts the function of membrane proteins mediating insulin action. Furthermore, membrane disturbances may be the basis of insulin resistance. Relevant insulin signal transduction data in terms of plasma membrane and insulin resistance are the focus of this review. The discussion visits the cell membrane hypothesis of insulin resistance that suggests insulin action could be related to changes in cell membrane properties.  相似文献   

8.
The enzyme 11β‐hydroxysteroid dehydrogenase 1 (11β‐HSD1) is known to catalyse inactive glucocorticoids into active forms, and its dysregulation in adipose and muscle tissues has been implicated in the development of metabolic syndrome. To delineate the molecular mechanism by which active cortisol has an antagonizing effect against insulin, we optimized the metabolic production of cortisol and its biological functions in myotubes (C2C12). Myotubes supplemented with cortisone actively catalysed its conversion into cortisol, which in turn abolished phosphorylation of Akt in response to insulin treatment. This led to diminished uptake of insulin‐induced glucose. This was corroborated by the application of 11β‐HSD1 inhibitor glycyrrhetinic acid and a glucocorticoid receptor antagonist RU‐486, which reversed completely the antagonizing effects of cortisol on insulin action. Therefore, development of specific inhibitors targeting 11β‐HSD1 might be a promising way to improve impaired insulin‐stimulated glucose uptake. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
BACKGROUND AND AIM: Alpha-lipoic acid has cytoprotective potential which has previously been explained by its antioxidant properties. The aim of this study was to assess LA-induced-specific cytoprotective signalling pathways in hepatocytes. METHODS: Apoptosis of rat hepatocytes was induced by actinomycinD/TNF-alpha. Caspase-3-like activity was determined by a fluorometric; LDH by an enzymatic assay; and phosphorylation of the insulin receptor, Akt, and Bad by Western blot (after immunoprecipitation). Protein kinase and insulin receptor activities were measured by in vitro phosphorylation. Computer modeling studies were performed by using the program GRID. RESULTS: Alpha-lipoic acid decreased actinomycinD/TNF-alpha-induced apoptosis, as did the antioxidants Trolox and N-acetylcysteine. The activation of PI3-kinase/Akt involving phosphorlyation of Bad markedly contributed to the cytoprotective action of alpha-lipoic acid. Alpha-lipoic acid but not other antioxidants protected against actinomycinD/TNF-alpha-induced apoptosis via phosphorylation of the insulin receptor. Computer modeling studies revealed a direct binding site for alpha-lipoic acid at the tyrosine kinase domain of the insulin receptor, suggesting a stabilizing function in loop A that is involved in ATP binding. Treatment of immunoprecipitated insulin receptor with LA induced substrate phosphorylation. CONCLUSIONS: Alpha-lipoic acid mediates its antiapoptotic action via activation of the insulin receptor/PI3-kinase/Akt pathway. We show for the first time a direct binding site for alpha-lipoic acid at the insulin receptor tyrosine kinase domain, which might make alpha-lipoic acid a model substance for the development of insulin mimetics.  相似文献   

10.
Mouse models of insulin resistance   总被引:1,自引:0,他引:1  
The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired coupling of glucose sensing to insulin secretion. Targeted mutagenesis and transgenesis involving components of the insulin action pathway have changed our understanding of these phenomena. It appears that the role of insulin signaling in the pathogenesis of type 2 diabetes has been overestimated in classic insulin target tissues, such as skeletal muscle, whereas it has been overlooked in liver, pancreatic beta-cells, and brain, which had been thought not to be primary insulin targets. We review recent progress and try to reconcile areas of apparent controversy surrounding insulin signaling in skeletal muscle and pancreatic beta-cells.  相似文献   

11.
Selenium, an essential biological trace element, is an integral component of several enzymes, and its use as a nutritional supplement has been popularized recently due to its potential role in low concentrations as an antioxidant and in higher concentrations as an anticancer agent. Selenium has also been reported to act as an insulin-mimetic agent with regard to normalization of blood glucose levels and regulation of some insulin-mediated metabolic processes. Little work, however, has been done concerning the pathway(s) by which this insulin-mimetic action occurs. In this study, we investigated the mechanism by which selenate exhibits insulin-mimetic properties in two different insulin responsive cell types, primary rat hepatocytes and 3T3 L1 adipocytes. We found that two proteins associated with the insulin signal cascade, the β-subunit of the insulin receptor and IRS-1, increased in tyrosyl phosphorylation in the presence of selenium. The third identified selenium activated signal protein, MAP kinase, has been implicated not only in the insulin signal transduction pathway but also in other growth factor-mediated responses. Using an in-gel activity assay for MAP kinase, we demonstrated that both the p42 and p44 MAP kinases are activated when either hepatocytes or adipocytes are incubated in the presence of selenate. In addition to the activation of these specific proteins, we found that selenium also eventually profoundly affected overall tyrosyl phosphorylation. Our results therefore show that selenium not only increased the phosphorylation of proteins identified in the insulin signal cascade but also affected the overall phosphorylation state of the cell.  相似文献   

12.
Adenosine 3',5'-cyclic monophosphate phosphodiesterase (EC 3.1.4.17) has been investigated in rat liver as to its insulin sensitivity. Hormone action has been assayed in vitro on a liver homogenate purified by DEAE-cellulose column chromatography, on isolated hepatocytes, on isolated plasma membranes. The DEAE-cellulose chromatography purified homogenate showed no sensitivity to insulin, whereas isolated hepatocytes incubated in presence of insulin showed increased phosphodiesterase activity in a plasma membrane-containing fraction. The plasma membrane-bound enzyme, which shows both high and low affinity components, was significantly stimulated after hormonal treatment; this effect being dependent on a V increase of the low Km form.  相似文献   

13.
Insulin resistance is characterized by an impaired responsiveness to the action of insulin at its multiple target organs. The accumulation of advanced glycation endproducts (AGEs) has been demonstrated in clinical settings of insulin resistance such as in diabetes, hypertension, and obesity. In this review we have focused on advanced glycation as a modulator of insulin resistance. Structural and functional abnormalities of the insulin molecule by glycation and methylglyoxal may contribute to the pathogenesis of insulin resistance. In addition, it is likely that AGEs interfere in the complex molecular pathways of insulin signaling and as such in insulin resistance.  相似文献   

14.
On the basis that digitoxin is the only drug reported up to now that stimulating insulin release per se, partially inhibits glucose stimulated insulin release, in this work the idea that the competition glucose-digitoxin may be at the level of a hypothetical glucoreceptor in the beta cells (binding of the glycoside sugar molecule) has been investigated. Our findings indicate that the integrity of the chemical structure of digitoxin is needed to exert its pharmacological action on insulin release. We also demonstrate that digitoxose inhibits glucose stimulated insulin release without inhibiting the glucose oxidation rates of the islets. The discovery of a sugar (digitoxose) that inhibitis the insulin secretory response to glucose without inhibiting glucose metabolism is a strong evidence that the action of glucose itself is blocked at the level of glucoreceptors located in the cell membrane, which appear to be the regulator sites of insulin release.  相似文献   

15.
Protein degradation has been measured in confluent monolayers of eleven lines of contact-inhibited cells and ten transformed lines as the rate of release of trichloroacetic acid-soluble radioactivity after prelabeling cell protein with [3H]leucine. Insulin, at concentrations from 10?12 M to 10?6 M, has been added at the beginning of the 4-hour degradation period to detect selective effects of this hormone as an inhibitor of the inducible proteolysis occurring in serumfree medium. In addition insulin binding measurements have been performed on selected cell lines in an attempt to relate receptor properties to insulin action. Substantial effects of insulin are found in most cells with a selective inhibition at low insulin concentrations noted in several of the transformed lines. The difference in insulin sensitivity is not entirely definitive because temperature-sensitive transformation mutants of NRK cells are not more sensitive to insulin at a temperature where they show the transformed phenotype. Although insulin receptors on different cell lines have similar binding properties, two of the hepatomas used, H35 and MH1C1, show inhibition of protein degradation at insulin concentrations where receptor occupancy is extremely low. Calvarial osteoblast-like cells have a high rate of protein degradation which can be reduced by growth factors but not by insulin. The lack of an insulin response is a consequence of poor insulin binding to the cells. Insulin binds to the osteogenic sarcoma cells in substantial amounts. However, its normal action to inhibit the induced proteolysis is restricted because with these cells no increase of proteolysis occurs in serum-free medium. Generally higher rates of protein degradation are observed in the contact-inhibited lines than the transformed cells. We suggest that this difference may provide a selective growth advantage to transformed cells.  相似文献   

16.
Incubation of rat liver particulate fraction with insulin causes the release of a substance that stimulates lipid synthesis and down regulates the insulin receptor in primary cultures of isolated rat hepatocytes. This substance may be similar to putative mediator(s) of insulin action which has been shown to modulate the activity of key enzymes of lipid and carbohydrate metabolism in various cell free systems. Our data demonstrate that the mediator of insulin is also biologically active in an intact cell system. Down regulation of the insulin receptor by the mediator supports the concept that this phenomenon is a post binding event of insulin action.  相似文献   

17.
The addition in vitro of insulin to rat adipose tissue (epididymal) produces marked metabolic changes which may be followed by measurement of the net gas exchange of the tissue. Using this method to monitor the metabolic action of insulin, concomitant observations with the electron microscope on the tissue have been made. These reveal that pronounced morphological changes are induced by insulin. The plasma membranes of the adipose cells become invaginated at many sites to form minute finger-like indentations. Numerous tiny, membrane-bounded vesicles are also present and arranged in relationship to the plasma membrane in such a way as to suggest that their formation occurred when a recessed fold was pinched off. Deeper in the cytoplasm, especially in specimens that had been incubated a longer time, numerous large, smooth, membrane-limited vesicles are seen. Finally, in these incubated specimens the cytoplasmic matrix has lost much of its granular nature, small lipid droplets are frequently found in the cytoplasm and suggestive changes have occurred in mitochondria. In control specimens, incubated without insulin for identical periods of time, indentations and vesicles in the plasma membrane are sparse at best and no vesicles or membrane-bound spaces appear deeper in the cytoplasm. The metabolic and morphologic changes induced by insulin seem to be interdependent events. Both changes appear to be initiated rapidly and concomitantly in the tissue. Both processes are initiated by insulin at concentrations considered to be physiological, 0.004 µg. (100 µunits) per ml. Insulin treated with alkali fails to initiate either process. It is concluded that insulin initiates pinocytosis in rat adipose tissue and the possible significance of this process in the mode of action of insulin is discussed.  相似文献   

18.
Phosphatidylinositol 3-kinase (PI3K)-dependent activation of atypical protein kinase C (aPKC) is required for insulin-stimulated glucose transport. Although insulin receptor substrate-1 (IRS-1) and IRS-2, among other factors, activate PI3K, there is little information on the relative roles of IRS-1and IRS-2 during aPKC activation by insulin action in specific cell types. Presently, we have used immortalized brown adipocytes in which either IRS-1 or IRS-2 has been knocked out by recombinant methods to examine IRS-1 and IRS-2 requirements for activation of aPKC. We have also used these adipocytes to see if IRS-1 and IRS-2 are required for activation of Cbl, which is required for insulin-stimulated glucose transport and has been found to function upstream of both PI3K/aPKC and Crk during thiazolidinedione action in 3T3/L1 adipocytes [Miura et al. (2003) Biochemistry 42, 14335]. In brown adipocytes in which either IRS-1 or IRS-2 was knocked out, insulin-induced increases in aPKC activity and glucose transport were markedly diminished. These effects of insulin on aPKC and glucose transport were fully restored by retroviral-mediated expression of IRS-1 or IRS-2 in their respective knockout cells. Knockout of IRS-1 or IRS-2 also inhibited insulin-induced increases in Cbl binding to the p85 subunit of PI3K, which, along with IRS-1/2, may be required for activation of PI3K, aPKC, and glucose transport during insulin action in 3T3/L1 adipocytes. These findings provide evidence that directly links both IRS-1 and IRS-2 to aPKC activation in immortalized brown adipocytes, and further suggest that IRS-1 and IRS-2 are required for the activation of Cbl/PI3K during insulin action in these cells.  相似文献   

19.
Insulin resistance is the most important pathophysiological feature in many pre-diabetic states. Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion by pancreatic beta cells. The creation of monogenic or polygenic genetically manipulated mice models in a tissue-specific manner was of great help to elucidate the tissue-specificity of insulin action and its contribution to the overall insulin resistance. However, complete understanding of the molecular bases of the insulin action and resistance requires the identification of the intracellular pathways that regulate insulin-stimulated proliferation, differentiation and metabolism. Accordingly, cell lines derived from insulin target tissues such as brown adipose tissue, liver and beta islets lacking insulin receptors or sensitive candidate genes such as IRS-1, IRS-2, IRS-3, IR and PTP1B were developed. Indeed, these cell lines have been also very useful to understand the tissue-specificity of insulin action and inaction.  相似文献   

20.
Ottensmeyer FP  Beniac DR  Luo RZ  Yip CC 《Biochemistry》2000,39(40):12103-12112
Transmembrane signaling via receptor tyrosine kinases generally requires oligomerization of receptor monomers, with the formation of ligand-induced dimers or higher multimers of the extracellular domains of the receptors. Such formations are expected to juxtapose the intracellular kinase domains at the correct distances and orientations for transphosphorylation. For receptors of the insulin receptor family that are constitutively dimeric, or those that form noncovalent dimers without ligands, the mechanism must be more complex. For these, the conformation must be changed by the ligand from one that prevents activation to one that is permissive for kinase phosphorylation. How the insulin ligand accomplishes this action has remained a puzzle since the discovery of the insulin receptor over 2 decades ago, primarily because membrane proteins in general have been refractory to structure determination by crystallography. However, high-resolution structural evidence on individual separate subdomains of the insulin receptor and of analogous proteins has been obtained. The recently solved quaternary structure of the complete dimeric insulin receptor in the presence of insulin has now served as the structural envelope into which such individual domains were fitted. The combined structure has provided answers on the details of insulin/receptor interactions in the binding site and on the mechanism of transmembrane signaling of this covalent dimer. The structure explains many observations on the behavior of the receptor, from greater or lesser binding of insulin and its variants, point and deletion mutants of the receptor, to antibody-binding patterns, and to the effects on basal and insulin-stimulated autophosphorylation under mild reducing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号