首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major rabbit skeletal muscle phosphorylase phosphatase activity which is markedly stimulated by histone H1 has been resolved from inhibitor-sensitive phosphorylase phosphatase (type-1 phosphatase), glycogen synthase kinase 3-activated phosphatase, phosphatase heat-stable inhibitor proteins, and alkaline phosphatase activity by various purification techniques. Evidence is presented that this phosphatase is a high-molecular weight form of a type-2 phosphatase. Our data suggest that this phosphatase may be regulated by histone H1, protamine or analogous polycationic compounds.  相似文献   

2.
3.
A high molecular weight phosphoprotein phosphatase was purified approximately 11,000-fold from the glycogen-protein complex of rabbit skeletal muscle. Polyacrylamide gel electrophoresis of the preparation in the absence of sodium dodecyl sulfate showed a major protein band which contained the activity of the enzyme. Gel electrophoresis in the presence of sodium dodecyl sulfate also showed a major protein band migrating at 38,000 daltons. The sedimentation coefficient, Stokes radius, and frictional ratio of the enzyme were determined to be 4.4 S, 4.4 nm, and 1.53, respectively. Based on these values the molecular weight of the enzyme was calculated to be 83,000. The high molecular weight phosphatase was dissociated upon chromatography on a reactive red-120 agarose column. The sedimentation coefficient, Stokes radius, and frictional ratio of the dissociated enzyme (termed monomer) were determined to be 4.1 S, 2.4 nm, and 1.05, respectively. The molecular weight of the monomer enzyme was determined to be 38,000 by polyacrylamide gel electrophoresis. Incubation of the high molecular weight phosphatase with a cleavable cross-linking reagent, 3,3'-dithiobis(sulfosuccinimidyl propionate), showed the formation of a cross-linked complex. The molecular weight of the cross-linked complex was determined to be 85,000 and a second dimension gel electrophoresis of the cleaved cross-linked complex showed that the latter contained only 38,000-dalton bands. Limited trypsinization of the enzyme released a approximately 4,000-dalton peptide from the monomers and dissociated the high molecular weight phosphatase into 34,000-dalton monomers. It is proposed that the catalytic activity of the native glycogen-bound phosphatase resides in a dimer of 38,000-dalton subunits.  相似文献   

4.
5.
Linker histone H1 is highly phosphorylated in normal growing Tetrahymena thermophila but becomes noticeably dephosphorylated in response to certain conditions such as prolonged starvation. Because phosphorylation of H1 has been associated with the regulation of gene expression, DNA repair, and other critical processes, we sought to use mass spectrometry-based approaches to obtain an in depth phosphorylation "signature" for this linker histone. Histone H1 from both growing and starved Tetrahymena was analyzed by nanoflow reversed-phase HPLC MS/MS following enzymatic digestions, propionic anhydride derivatization, and phosphopeptide enrichment via IMAC. We confirmed five phosphorylation sites identified previously and detected two novel sites of phosphorylation and two novel minor sites of acetylation. The sequential order of phosphorylation on H1 was deduced by using mass spectrometry to define the modified sites on phosphorylated H1 isoforms separated by cation-exchange chromatography. Relative levels of site-specific phosphorylation on H1 isolated from growing and starved Tetrahymena were obtained using a combination of stable isotopic labeling, IMAC, and tandem mass spectrometry.  相似文献   

6.
Phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase results in the incorporation of 32P into two major tryptic peptides (P-1 and P-2) which are identified by isoelectric focusing on polyacrylamide gel. When 32P-labeled synthase is incubated with rabbit muscle phosphoprotein phosphatase both P-1 and P-2 are hydrolyzed. Incubation of 32P-labeled synthase with human placental alkaline phosphatase results in a specific hydrolysis of P-1. Measurement of the increase in synthase activity ratio accompanied by the dephosphorylation of P-1 with human placental alkaline phosphatase and, subsequently, of P-2 with phosphoprotein phosphatase shows that both P-1 and P-2 affect the glucose-6-P dependency of the synthase.  相似文献   

7.
8.
9.
10.
A phosphoprotein phosphatase preparation which showed activity towards glycogen synthase, phosphorylase, phosphorylase kinase, and phosphohistones was reversibly inhibited (70–90%) by preincubation with free ATP (apparent Ki about 0.3 mM). Other nucleotides (ADP2 (apparent Ka 3μM) prior to assay. Other divalent metals (Co++ > Zn++ > Mg++) were partially effective in reversing the inhibition. It is concluded that ATP by virtue of its special structure and metal binding capacity possibly removes a catalytically important metal ion from the enzyme.  相似文献   

11.
Summary Pig intestinal brush borders (BB) were radiolabeled by iodination using the lactoperoxidase-hydrogen peroxide procedure. The BB were then detergent solubilized, centrifuged to remove particulate material, and chromatographed on Sepharose CL-4B. The fractions were incubated with K88+ E. coli using an in vitro binding assay. Binding of the iodinated membranes to K88+ E. coli occurred throughout a wide range of molecular weight components, in excess of 690K daltons to near 25K daltons. The system utilizing intact K88+ E. coli and solubilized BB was shown to be saturable. Prior contact of K88+ E. coli with nonradiolabeled membranes or specific antibodies to K88+ pili inhibited binding of the radiolabeled BB. Simple sugars were tested for their ability to block binding of the labeled BB; partial inhibition occurred with galactose (17.9%), galactosamine (32%), glucose (10.6%), and N-acetylglucosamine (32%). Calcium enhanced binding with as little as 10 M. A 10 × increase in binding occurred with 500 M calcium. Affinity chromatography using K88+ pili coupled on agarose beads avidly bound the labeled BB. The receptor membranes were eluted with high molar concentrations of salt, however considerable degradation occurred. Despite low yields from the affinity system, receptor membranes with higher binding activities were recovered. Protein: glycoprotein ratios were 1:4. Elution with SDS and electrophoresis on 12.5% polyacrylamide gels in the presence of a reducing agent produced two major subunits 35–32K and 23K daltons. These components were recovered from the gels and retained their binding activity. This information suggests that the intestinal receptor responsible for binding of K88+ E. coli is a glycoprotein, that in the native state exists in multimeric forms.  相似文献   

12.
Phosphorylase phosphatase from skeletal muscle membranes   总被引:2,自引:0,他引:2  
Microsomes containing 12-15 U/mg phosphorylase phosphatase were obtained from skeletal muscle glycogen particles following glycogen digestion and differential centrifugation. The phosphatase associated with the membranes is in an inhibited state; dilution induces dissociation and deinhibition of the enzyme. Phosphatase-depleted membranes can rebind purified phosphatase catalytic subunit but not the complex between catalytic subunit and inhibitor 2. Binding involves a receptor, deduced from saturation phenomena, which is responsible for inhibition of the bound enzyme and which is a protein, since trypsin treatment releases all bound enzyme and prevents rebinding. The phosphatase extracted from the membranes is of type 1 and is a mixture of complexes, the major ones displaying a Mr of 300,000 and 70,000. From these complexes the 35-kDa catalytic subunit can be obtained either by trypsin treatment or by acetone precipitation. Purification to homogeneity involves chromatography on polylysine and FPLC chromatography on Mono Q and Polyanion SI columns. The purified enzyme exhibits a specific activity of 26,800 U/mg (27,900 U/mg after trypsin treatment) and consists of a major protein of 38 kDa (SDS gel electrophoresis). A minor component of 33 kDa, which may represent either a proteolytic product or an isozyme, can be separated. Both 38-kDa and 33-kDa catalytic subunits form a 70-kDa inactive complex with inhibitor 2 and upon incubation of the complexes the catalytic subunit is slowly converted to the inactive conformation which can then be reactivated by either the kinase FA or trypsin and Mn2+. Alternatively the inactive catalytic subunit is reactivated by Mn2+ alone once it has been isolated by FPLC chromatography on SI. The observation that the same catalytic subunit is present at various cell locations (namely cytosol, glycogen particles and microsomes), though in different conformations, is in favour of the hypothesis that displacement of the catalytic subunit from one cell site to the other may represent a new mechanism for phosphatase regulation in skeletal muscle.  相似文献   

13.
14.
A high molecular weight protein phosphatase (phosphatase H-II) was isolated from rabbit skeletal muscle. The enzyme had a Mr = 260,000 as determined by gel filtration and possessed two types of subunit, of Mr = 70,000 and 35,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On ethanol treatment, the enzyme was dissociated to an active species of Mr = 35,000. The purified phosphatase dephosphorylated lysine-rich histone, phosphorylase a, glycogen synthase, and phosphorylase kinase. It dephosphorylated both the alpha- and beta-subunit phosphates of phosphorylase kinase, with a preference for the dephosphorylation of the alpha-subunit phosphate over the beta-subunit phosphate of phosphorylase kinase. The enzyme also dephosphorylated p-nitrophenyl phosphate at alkaline pH. Phosphatase H-II is distinct from the major phosphorylase phosphatase activities in the muscle extracts. Its enzymatic properties closely resemble that of a Mr = 33,500 protein phosphatase (protein phosphatase C-II) isolated from the same tissue. However, despite their similarity of enzymatic properties, the Mr = 35,000 subunit of phosphatase H-II is physically different from phosphatase C-II as revealed by their different sizes on sodium dodecyl sulfate-gel electrophoresis. On trypsin treatment of the enzyme, this subunit is converted to a form which is a similar size to phosphatase C-II.  相似文献   

15.
Isolation of functional and intact mitochondria from solid tissue is crucial for studies that focus on the elucidation of normal mitochondrial physiology and/or mitochondrial dysfunction in conditions such as aging, diabetes, and cancer. There is growing recognition of the importance of mitochondria both as targets for drug development and as off-target mediators of drug side effects. Unfortunately, mitochondrial isolation from tissue is generally carried out using homogenizer-based methods that require extensive operator experience to obtain reproducible high-quality preparations. These methods limit dissemination, impede scale-up, and contribute to difficulties in reproducing experimental results over time and across laboratories. Here we describe semiautomated methods to disrupt tissue using kidney and muscle mitochondria preparations as exemplars. These methods use the Barocycler, the PCT Shredder, or both. The PCT Shredder is a mechanical grinder that quickly breaks up tissue without significant risk of overhomogenization. Mitochondria isolated using the PCT Shredder are shown to be comparable to controls. The Barocycler generates controlled pressure pulses that can be adjusted to lyse cells and release organelles. The mitochondria subjected to pressure cycling-mediated tissue disruption are shown to retain functionality, enabling combinations of the PCT Shredder and the Barocycler to be used to purify mitochondrial preparations.  相似文献   

16.
17.
18.
PTPA, a specific phosphotyrosyl phosphatase activator of the PCSH2 and PCSL protein phosphatases, was purified up to apparent homogeneity from Xenopus laevis ovaries and rabbit skeletal muscle and highly purified from dog liver. PTPA appears as a 40-kDa protein in gel filtration, as well as in sucrose gradient centrifugation, and as a 37-39-kDa protein doublet in SDS-PAGE. Its estimated cellular concentration of 0.75 microM in oocytes or 0.25 microM in rabbit skeletal muscle is suggestive of an important role in the regulation of the cellular PTPase activity. The PTPase activation reaction of the PCSL phosphatase is time-dependent, ATP and Mg2+ being essential cofactors [A50(ATP) = 0.12 mM in the presence of 5 mM MgCl2]. With RCM lysozyme as substrate, the specific activity of the PTPA-activated PCSL phosphatase is 700 nmol of Pi/(min.mg). The pH optimum of the PTPase shifts from 8.5-9 in basal conditions to a neutral pH (7-7.5), and the A50 for the essential metal ion Mg2+ is decreased (3 mM). The activation is rapidly reversed in the presence of the substrate, and more slowly after removal of ATP.Mg. The PTPA-activated PCSL phosphatase represents a major PTPase activity in the cytosol of X. laevis oocytes (at least 50% of the measurable PTPase with RCM lysozyme phosphorylated on tyrosyl residues). The PTPA activation is specific for the PTPase activity of the PCSL and PCSH2 phosphatases, without affecting their phosphoseryl/threonyl phosphatase activity. However, effectors of the phosphorylase phosphatase activity, such as polycations and okadaic acid, also influence the PTPase activity. Phosphorylase alpha inhibits the activated PTPase activity (I50 = 5 microM). The PTPase activity of the other oligomeric PCS phosphatases (PCSH1 and PCSM) is not influenced, suggesting an inhibitory role for some of their subunits. This activation is compared with the recently described PTPase stimulation of the PCS phosphatases by ATP/PPi [Goris, J., Pallen, C. J., Parker, P. J., Hermann, J., Waterfield, M. D., & Merlevede, W. (1988) Biochem. J. 256, 1029-1034] and by tubulin [Jessus, C., Goris, J., Cayla, X., Hermann, J., Hendrix, P., Ozon, R., & Merlevede, W. (1989) Eur. J. Biochem. 180, 15-22].  相似文献   

19.
20.
The complete primary structure of protein phosphatase inhibitor-1 has been determined. The protein consists of a single polypeptide chain of 165 residues, molecular weight 18640. The threonine residue that must be phosphorylated for activation is at position 35 and the active cyanogen bromide peptide, CB-1, comprises residues 2-66. The N-terminal methionine is acetylated and 40% of the inhibitor-1 molecules lack the C-terminal dipeptide Ala-Val. Serine-67 is substantially phosphorylated in vivo, but this phosphoserine residue does not appear to influence the activity of inhibitor-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号