首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
成年哺乳动物的神经发生现象被大量研究证实,影响和调节神经发生的因素也逐渐被揭示.小胶质细胞是中枢神经系统重要的"免疫"细胞,它对神经发生具有广泛的调节作用.一方面,小胶质细胞通过与T细胞作用,或者释放神经生长因子促进神经发生;另一方面,激活的小胶质细胞释放一些细胞因子,形成一个不利于新生神经细胞的生存环境.本文对有关小胶质细胞影响神经发生的最新研究进展进行综述,这些研究进展将为理解小胶质细胞与神经发生的关系以及探索促进神经损伤修复的措施提供重要线索.  相似文献   

2.
What is the function of new neurons entering the olfactory bulb? Many insights regarding the molecular control of adult neurogenesis have been uncovered, but the purpose of new neurons entering the olfactory bulb has been difficult to ascertain. Here, studies investigating the role of adult neurogenesis in olfactory discrimination in mice are reviewed. Studies in which adult neurogenesis is affected are highlighted, with a focus on the role of environment enrichment and what happens during ageing. There is evidence for a role of adult neurogenesis in fine discrimination tasks, as underscored by studies that enhance adult neurogenesis. This is also observed in ageing studies, where older mice with reduced levels of adult neurogenesis perform poorly in olfactory discrimination. Differences in methodology that could account for alternative conclusions, and the importance of specificity in methods being used to investigate the effect of adult neurogenesis in olfactory performance are emphasized.  相似文献   

3.
The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain.  相似文献   

4.
Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system.  相似文献   

5.
The hippocampus is one of the only two regions in the adult mammalian brain endowed with life-long neurogenesis. Yet this adult neurogenesis is a challenging process as newborn neurons face several times life-and-death decisions while in the process of stably integrating into a pre-existing network. Here we describe the morphological and physiological changes a young neuron experiences during its first few weeks of life of stepwise integration into the circuit. This process is competitive in nature, with only few of the newly generated neurons being awarded with a grant of survival. Although the underlying mechanisms are far from being understood, evidence suggests that this competition for stable integration and survival amongst cohorts of newborn neurons occurs to large degree on a synaptic level and may involve specific patterns of neural activity.  相似文献   

6.
The ability to discriminate and store similar inputs as distinct representations in memory is thought to rely on a process called pattern separation in the dentate gyrus of the hippocampus. Recent computational and empirical findings support a role for adult-born granule neurons in spatial pattern separation. We reviewed rodent studies that have manipulated both hippocampal adult neurogenesis and assessed pattern separation. The majority of studies report a supporting role of adult born neurons in pattern separation as measured at the behavioral level. However, closer evaluation of the published findings reveals variation in both pattern separation tasks and in the interpretation of behavioral performance that, taken together, suggests that the role of hippocampal adult neurogenesis in pattern separation may be less established than is currently assumed. Assessment of pattern separation at the network level through the use of immediate early gene expression, optogenetic, pharmacogenetic and/or in vivo electrophysiology studies could be instrumental in further confirming a role of adult born neurons in pattern separation further. Finally, hippocampal adult neurogenesis and pattern separation are not an exclusive pair, as evidence for hippocampal adult neurogenesis contributing to the temporal separation of events in memory, forgetting and cognitive flexibility has also been found. We conclude that whereas current empirical evidence for the involvement of hippocampal adult neurogenesis in pattern separation seems supportive, there is a need for careful interpretation of behavioral findings and an integration of the various proposed functions of adult born neurons.  相似文献   

7.
Contrary to the long-held dogma according to which the adult mammalian brain does not produce neurons anymore, neuronal turnover has been reported in two discrete areas of the adult brain: the hippocampus and the olfactory bulb. Adult-generated neurons are produced from neural stem cells located in the hippocampal subgranular zone and the subventricular zone of the lateral ventricles. Recently, number of genetic and epigenetic factors that modulate proliferation of stem cells, migration, differentiation and survival of newborn neurons have been characterized. We know that neurogenesis increases in the diseased brain, after stroke or after traumatic brain injury. Importantly, progenitors from the subventricular zone, but not from the subgranular zone, are incorporated at the sites of injury, where they replace some of the degenerated neurons. Thus, the central nervous system has the capacity to regenerate itself after injury and, today, researchers develop strategies aimed at promoting neurogenesis in diseased areas. This basic research is attracting a lot of attention because of the hope that it will lead to regeneration and reconstruction therapy for the damaged brain. In this review, we discuss major findings concerning the organization of the neurogenic niche located in the subventricular zone and examine both intrinsic and extrinsic factors that regulate adult neurogenesis. Then, we present evidences for the intrinsic capability of the adult brain for cell replacement, and shed light on recent works demonstrating that one can greatly enhance appropriate brain cell replacement by using molecular cues known to endogenously control proliferation, migration, differentiation and/or survival of subventricular zone progenitors. Finally, we review some of the advantages and limits of strategies aimed at using endogenous progenitors and their relevance to human clinics.  相似文献   

8.
Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis.  相似文献   

9.
The role of adult hippocampal neurogenesis in spatial learning remains a matter of debate. Here, we show that spatial learning modifies neurogenesis by inducing a cascade of events that resembles the selective stabilization process characterizing development. Learning promotes survival of relatively mature neurons, apoptosis of more immature cells, and finally, proliferation of neural precursors. These are three interrelated events mediating learning. Thus, blocking apoptosis impairs memory and inhibits learning-induced cell survival and cell proliferation. In conclusion, during learning, similar to the selective stabilization process, neuronal networks are sculpted by a tightly regulated selection and suppression of different populations of newly born neurons.  相似文献   

10.
Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiated in vitro from several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.  相似文献   

11.
Until recently, it was believed that adult brains were unable to generate any new neurons. However, it is now commonly known that stem cells remain in the adult central nervous system and that adult vertebrates as well as adult invertebrates are currently adding new neurons in some specialized structures of their central nervous system. In vertebrates, the subventricular zone and the dentate gyrus of the hippocampus are the sites of neuronal precursor proliferation. In some insects, persistent neurogenesis occurs in the mushroom bodies, which are brain structures involved in learning and memory and considered as functional analogues of the hippocampus. In both vertebrates and invertebrates, secondary neurogenesis (including neuroblast proliferation and neuron differentiation) appears to be regulated by hormones, transmitters, growth factors and environmental cues. The functional implications of adult neurogenesis have not yet been clearly demonstrated and comparative study of the various model systems could contribute to better understand this phenomenon. Here, we review and discuss the common characteristics of adult neurogenesis in the various animal models studied so far.  相似文献   

12.
Hippocampal function varies along its septotemporal axis, with the septal (dorsal) pole more frequently involved in spatial learning and memory and the temporal (ventral) pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1–2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in neurogenesis could alter different hippocampus-dependent behaviors with different time courses.  相似文献   

13.
14.
Dopamine plays an important role in cellular processes controlling the functional and structural plasticity of neurons, as well as their generation and proliferation, both in the developing and the adult brain. The precise roles of individual dopamine receptors subtypes in adult neurogenesis remain poorly defined, although D3 receptors are known to be involved in neurogenesis in the subventricular zone. By contrast, very few studies have addressed the influence of dopamine and D3 receptors upon neurogenesis in the subgranular zone of the hippocampus, an issue addressed herein employing constitutive D3 receptor knockout mice, or chronic exposure to the preferential D3 receptor antagonist, S33138. D3 receptor knockout mice revealed increased baseline levels of cell proliferation and ongoing neurogenesis, as measured both using Ki‐67 and doublecortin, whereas there was no difference in cell survival as measured by BrdU (5‐bromo‐2′‐deoxyuridine). Chronic administration of S33138 was shown to be functionally active in enhancing levels of the plasticity‐related molecule, delta‐FosB, in the D3 receptor‐rich nucleus accumbens. In accordance with the stimulated neurogenesis seen in D3 receptor knockout mice, S33138 increased proliferation in wild‐type mice. These observations suggest that D3 receptors exert a tonic, constitutive inhibitory influence upon adult hippocampal neurogenesis.  相似文献   

15.
It has been hypothesized that individuals who have higher demands for spatially based behaviours should show increases in hippocampal attributes. Some avian species have been shown to use a spatially based representation of their environment during migration. Further, differences in hippocampal attributes have been shown between migratory and non-migratory subspecies as well as between individuals with and without migratory experience (juveniles versus adults). We tested whether migratory behaviour might also be associated with increased hippocampal neurogenesis, and whether potential differences track previously reported differences in hippocampal attributes between a migratory (Zonotrichia leucophrys gambelii) and non-migratory subspecies (Z. l. nuttalli) of white-crowned sparrows. We found that non-migratory adults had relatively fewer numbers of immature hippocampal neurons than adult migratory birds, while adult non-migrants had a lower density of new hippocampal neurons than adult and juvenile migratory birds and juvenile non-migratory birds. Our results suggest that neurogenesis decreases with age, as juveniles, regardless of migratory status, exhibit similar and higher levels of neurogenesis than non-migratory adults. However, our results also suggest that adult migrants may either seasonally increase or maintain neurogenesis levels comparable to those found in juveniles. Our results thus suggest that migratory behaviour in adults is associated with maintained or increased neurogenesis and the differential production of new neurons may be the mechanism underpinning changes in the hippocampal architecture between adult migratory and non-migratory birds.  相似文献   

16.
Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.  相似文献   

17.
Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.  相似文献   

18.
Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ) reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.  相似文献   

19.
神经发生是神经干细胞在适当的条件下分化成功能性整合神经元的过程,主要包括细胞的增殖、迁移、分化和存活。成年神经发生区以前脑室管膜下区(Subventricular zones,SVZ)和海马齿状回颗粒层下区(Subgranular zones,SGZ)为主,但皮质作为神经元和神经胶质细胞数量最多、分布最广,同时也是哺乳动物高度发展的脑区,是否有成年神经元新生,已成为近年来神经科学领域的研究热点[1,2]。现本文就未成熟神经元在皮质区的研究方法、分布、来源与转归、病理生理功能影响等方面探讨成年哺乳动物皮质神经发生现象。  相似文献   

20.

Background

Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS) under the murine Thy1 (mThy1) promoter, a model known to have a particularly high tg expression associated with impaired olfaction.

Results

Survival of newly generated neurons (NeuN-positive) in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF) promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.

Conclusions

The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号