首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clonostachys rosea f. catenulata (Gliocladium catenulatum) strain J1446 (formulated as Prestop WP) suppressed Fusarium root and stem rot caused by Fusarium oxysporum f. sp. radicis-cucumerinum (Forc) on cucumber plants grown hydroponically in rockwool medium. Sixty days following application at seeding, the biocontrol agent had proliferated through the rockwool blocks and was present on cucumber roots and the crown region of the stem at populations >1 × 105 CFU/g fresh weight. Scanning electron micrographs showed that C. rosea had rapidly colonized the root surface and was associated with root hairs and epidermal cell junctions. Following transformation of the fungus with Agrobacterium tumefaciens strain AGL-1 containing the hygromycin resistance (hph) and β-glucuronidase (uidA) genes, blue-stained mycelia could be seen growing on the surface and within epidermal and cortical cells of roots, stems and shoots 3 weeks after treatment. Quantification of GUS activity by fluorometric assays showed that fungal biomass was highest in the roots and crown area, while the extent of colonization of upper stems and true leaves was variable. Higher population levels resulted following application to rockwool blocks compared to seed treatment. Application of C. rosea preceding inoculation with Forc significantly reduced pathogen populations on roots compared to plants inoculated with Forc alone. Colonization of infection sites in the root zone reduced pathogen development and disease incidence. Densities of the biocontrol agent appeared to increase in the presence of the pathogen.  相似文献   

2.
This study investigated the induced defence responses and protective effects on susceptible tomato (Lycopersicon esculentum Mill.) against Xanthomonas vesicatoria (Doidge) by a heat-treated aqueous extract (VLA) from dry necrotic tissue of ‘Lobeira’ (Solanum lycocarpum St. Hil.) branches infected with the fungus Crinipellis perniciosa (Stahel) compared with acibenzolar-S-methyl (ASM), a commercial inducer of resistance. Plantlets were sprayed with VLA and ASM and challenged 4 days later with a virulent strain of X. vesicatoria, under greenhouse conditions. The disease severity, fresh weight of shoots, the activities of phenol peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), phenylalanine ammonia-lyase (PAL), lignin deposition, and soluble phenolic contents were evaluated in the leaf tissues. Reduction of the bacterial spot severity was observed in plantlets treated with VLA which conferred 63% of the ASM protection. This protective effect and lesion reduction promoted by VLA were probably associated particularly with POX and PAL activities, lignin deposition on leaf tissues and, to a less extent, CHI activity.  相似文献   

3.
Previous studies have described that arbuscular mycorrhizal fungi (AMF) can reduce the deleterious effect of Verticillium dahliae Kleb. on pepper growth and yield. In mycorrhizal plants, the bioprotection against soil-borne pathogens can result from the preactivation of defence responses that include some structural modifications and the accumulation of Pathogenesis-Related (PR) proteins. Our first objective was to study if V. dahliae induced defence mechanisms in roots before infected pepper developed visible symptoms of disease. The second aim was to determine if AMF induced defence-related enzymatic activities in pepper roots before or after pathogen’s attack. Results showed that the colonization of pepper roots by Glomus deserticola (Trappe, Bloss and Menge) induced the appearance of new isoforms of acidic chitinases, superoxide dismutase (SOD) and, at early stages, peroxidases. In contrast, V. dahliae neither stimulated the phenylpropanoid pathway nor elicited hydrolytic activities in infected pepper roots. Only in mycorrhizal plants, the inoculation with V. dahliae slightly increased both phenylalanine ammonia-lyase (PAL) and peroxidase activities two weeks later. Mycorrhizal-specific induction of new isoforms of acidic chitinases and SOD together with enhanced peroxidase and PAL activities 2 weeks after pathogen inoculation could be involved in the biocontrol of Verticillium-induced wilt in pepper by AMF.  相似文献   

4.
Cell suspension cultures of three varieties of Capsicum annuum L., each with a different degree of sensitivity to the fungus Phytophthora capsici, responded to elicitation by both lyophilized mycelium and fungus filtrate with a hypersensitive reaction. They showed the synthesis or accumulation of PR-proteins with peroxidase (EC 1.11.1.7) activity and the accumulation of lignin-like polymer (as measured by derivatization with thioglycolic acid). The cultivation medium was optimised for both plant and fungus growth in order to avoid any stress during their combination. The resistant pepper variety, Smith-5, showed a more intense response to the elicitor preparations than the sensitive varieties, Americano and Yolo Wonder. This was particularly evident when the cell suspensions were elicited with the filtrate. After elicitation, the cell walls thickened through the accumulation of lignin, as can be observed by staining microscope preparations with methylene blue. Elicitation also reduced the level of total peroxidase activity in the susceptible varieties, while such activity increased in resistant varieties, and was accompanied by de novo expression of acidic peroxidase isoenzymes in the extracellular and cell wall fractions. Of note was the PR protein of pI 5.7 showing peroxidase activity, which was induced by both elicitor types in the elicited cell suspensions of the resistant variety alone, making it a marker of resistance. The increases in the activity of these peroxidases in the resistant variety are in concordance with the accumulation of lignin observed 24 h after inoculation by both elicitors from the fungus. The possible role of these isoenzymes in lignin biosynthesis, used to reinforce the cell walls against fungal penetration of the cells, is discussed. These results are in accordance with those previously observed in plant stem sections.  相似文献   

5.
Four chemicals [salicylic acid (SA), sodium salt of salicylic acid (NaSA), isonicotinic acid (INA), and DL-β-amino-n-butyric acid (BABA)] and the yeast antagonist Cryptococcus flavescens (=C. nodaensis nomen nudum) OH 182.9 were evaluated separately or together for the ability to reduce Fusarium head blight (FHB) of wheat in the greenhouse. When sprayed onto wheat heads at 3 days prior to pathogen challenge with Gibberella zeae, NaSA and INA at 10 mM significantly reduced FHB severity compared to the non-treated disease control. Applied at concentrations of 1 and 5 mM at 3 days before pathogen challenge, NaSA or INA in combination with OH 182.9 did not significantly reduce FHB severity compared to either treatment alone, though the lowest disease severity values frequently were associated with the combination treatments. When sprayed onto wheat heads just beginning to emerge from boot at 10 days prior to pathogen inoculation, NaSA, INA, and BABA at 1 mM significantly reduced FHB severity indicating that induced systemic resistance was at least partially responsible for the reduction of FHB disease. Induced FHB resistance was achieved by treating wheat with INA at concentrations as low as 0.1 mM. In only one instance was 100-kernel weight affected by any chemical or combination of chemicals with OH 182.9 treatment. Data from our studies in the greenhouse suggest that chemical inducers can induce resistance in wheat against FHB, and that further efforts are warranted to explore the potential of improved control of FHB disease by incorporating chemical inducers with the FHB biocontrol agent OH 182.9.  相似文献   

6.
【背景】烟草疫霉(Phytophthora nicotianae)引起的烟草黑胫病(tobacco black shank)是烤烟生产上重要的土传根茎病害之一,生产上防治困难。【目的】筛选对病原菌具有强拮抗能力的有益微生物菌株是开展生物防治的基础。【方法】采用平板对峙法筛选对烟草疫霉具有拮抗作用的枝穗霉菌株。根据枝穗霉在烟草疫霉菌落上的覆盖程度和产孢量,以及对烟草疫霉菌丝、孢囊梗和孢子囊的缠绕情况,将枝穗霉的拮抗能力划分为强、中等、弱和无4个等级。【结果】供试8种65株枝穗霉中,6株具有强拮抗能力、27株具有中等拮抗能力、22株具有弱拮抗能力、10株无拮抗能力;不同枝穗霉菌株对烟草疫霉的抑制率大小为20.0%-86.7%。【结论】粉红枝穗霉(Clonostachys rosea)菌株7901、11361和亚麻生枝穗霉(C. byssicola)5072、6729、7507及条孢枝穗霉(C. grammicospora)6730对烟草疫霉具有强拮抗能力,这为后续盆栽试验及作用机理研究等提供了种质资源。  相似文献   

7.
The effect of leaf rust (Puccinia triticina) infection on intercellular chitinase (EC 3.2.1.14) and peroxidase (EC 1.11.1.7) activities was studied in resistant [RL 6082 (Thatcher/Lr35)] and susceptible (Thatcher) near isogenic wheat (Triticum aestivum L.) lines at seedling, stem elongation and flag leaf stages of plant growth. The levels of activity of these enzymes were low during the seedling and stem elongation stages. Resistant plants at the flag leaf stage, during which the Lr35 resistance gene was maximally expressed, exhibited high constitutive levels of chitinase and peroxidase activities, in contrast to the lower constitutive levels of susceptible plants. The results suggest that chitinase and peroxidase, constitutively present in the intercellular spaces of Thatcher/Lr35 wheat leaves, may play a role in Lr35 mediated resistance to leaf rust.  相似文献   

8.
Gray mold, caused by Botrytis cinerea, is an important strawberry disease. As gray mold control is difficult, there is a need to evaluate integrated methods to successfully manage the disease. The efficiency of integrating Clonostachys rosea sprays, fungicide sprays, and crop debris removal to manage gray mold was evaluated in field experiments conducted in 2006 and 2007. Leaf colonization by C. rosea (LAC), average number of B. cinerea conidiophores (ANC), gray mold incidence in both flowers (Iflower) and fruits (Ifruit), and yield were evaluated weekly. In both years, LAC was higher in the treatments with no fungicide. When compared to the check, ANC, Iflower and Ifruit were most reduced in treatments that included C. rosea sprays. Maximal reductions were achieved with the combination of C. rosea sprays, fungicide sprays and debris removal (96.62%, 86.54% and 65.33% reductions of ANC, Iflower and Ifruit, respectively). Otherwise, maximal yield (103.14% increase as compared to the check) was achieved with the combination of the three treatments. With just C. rosea sprays, ANC, Iflower and Ifruit were reduced by 92.01%, 68.48% and 65.33%, respectively, whereas yield was increased by 75.15%. Considering the individual effects, application of C. rosea was the most efficient treatment. Chemical control was effective only in plots without debris removal. Elimination of crop debris was the least effective method in reducing gray mold incidence in both flowers and fruits. The integrated control approach enhanced the efficacy of the individual methods of gray mold control and provided high strawberry yield. An important component of this integrated approach it the biological control with C. rosea.  相似文献   

9.
To evaluate the biocontrol effectiveness of chitinase-producing bacterium, Paenibacillus illinoisensis strain KJA-424 against pathogenic strain of Phytophthora capsici in pepper plants, growth response and kinetics of pathogen related (PR) proteins were estimated after inoculation with P. capsici (P), and with a combination of P. capsici and strain KJA-424 cell culture (P+A). Fresh weight and chlorophyll content in shoots at P+A-treated plants significantly increased by 23.4 and 34.2%, respectively after 7days of inoculation, compared to P-treated plants. Root mortality in P+A-treated plants was significantly reduced compared to P-treated plants. Seven days after inoculation, the activities of -1,3-glucanase, cellulase and chitinase in P-treated roots had decreased by 54.8, 36.5 and 52.8%, respectively, compared to P+A-treated roots, while those in P-treated leaves increased by 22.8, 36.3 and 23.8%, respectively, compared to those in P+A-treated leaves. The activities of -1,3-glucanase, cellulase and chitinase in roots are negatively correlated with root mortality. All these results suggest that the inoculation of an antagonist, P. illinoisensis alleviates root mortality, reduction of PR proteins in roots, and activates of PR proteins in leaves infected by P. capsici.  相似文献   

10.
为了解异源多倍体形成后,其剪接因子基因SR30在各组织器官间的表达量以及选择性剪接模式与亲本的差异,选取萝卜-芥蓝异源四倍体(Raphanobrassica)及其亲本萝卜(Raphanus sativus)、芥蓝(Brassica oleracea var.alboglabra)为材料,运用RACE-PCR方法克隆到全长的编码序列(CDS)和3非编码区(3 UTR),运用q RT-PCR和半定量RT-PCR检测其在各组织器官中的表达量和各转录本表达量间的差异。结果表明,四倍体中萝卜同源的Rs SR30基因有5种转录本,芥蓝同源的Bo SR30基因有4种转录本。同时,SR30在3物种中的表达具有组织器官的差异,且在四倍体中的总体表达量显著低于亲本。根据克隆到的转录本,预测Rs SR30编码3种蛋白,Bo SR30编码2种,不同蛋白异构体的区别体现在C末端的丝氨酸-精氨酸富集(RS)结构域。因此,萝卜-芥蓝异源多倍体形成后,SR30基因在表达量和转录本选择性剪接方面都发生了改变。  相似文献   

11.
Biofumigation by Brassicaceae green manure or seed meal incorporation into soil is an ecological alternative to chemical fumigation against soil-borne pathogens, based on the release of glucosinolate-derived compounds. This study aimed at investigating the tolerance of the beneficial fungus Trichoderma to these compounds in view to combined utilization with Brassica carinata seed meal (BCSM). Forty isolates of Trichoderma spp. were tested in vitro for tolerance to toxic volatiles released by BCSM and in direct contact with the meal. They were found to be generally less sensitive than the assayed pathogens (Pythium ultimum, Rhizoctonia solani, Fusarium oxysporum), even if a fungistatic effect was observed at the highest dose (10 μmole of sinigrin). Most of them also were able to grow on BCSM and over the pathogens tested. A preliminary experiment of integrating BCSM with Trichoderma in soil was carried out under controlled conditions with the patho-system P. ultimum—sugar beet. BCSM incorporation increased pathogen population, but reduced disease incidence, probably due to indirect mechanisms. The greatest effect was achieved when BCSM was applied in combination with Trichoderma, regardless of meal ability to release isothiocyanate. These findings suggest that disease control can be improved by this integrated approach. This study also highlighted that a reduction of allyl-isothiocyanate concentration in soil could occur due to the activity of some Trichoderma isolates. This effect could protect resident or introduced Trichoderma isolates from depressing effects due to the biocidal compounds, but, on the other hand, could reduce the efficacy of biofumigation against target pathogens.  相似文献   

12.
13.
Recently the rice (Oryza sativa L.) OsPR1a and OsPR1b genes were primarily characterized against jasmonic acid, ethylene and protein phosphatase 2A inhibitors. The dicot PR1 are recognized as reliable marker genes in defence/stress responses, and we also propose OsPR1 as marker genes in rice, a model monocot crop genus. Therefore, to gain further insight into the expression/regulation of OsPR1 genes, we characterized their activation against signalling molecules such as salicylic acid (SA), abscisic acid (ABA) and hydrogen peroxide (H2O2), and the blast pathogen Magnaporthe grisea. Here, we report that SA and H2O2 strongly induced the mRNA level of both OsPR1 genes, whereas ABA was found to be moderately effective. These inductions were specific in nature and required a de novo synthesized protein factor. A potential interaction amongst the signalling molecules in modulating the expression of OsPR1 genes was observed. Moreover, a specific induction of OsPR1 expression in an incompatible versus compatible host-pathogen interaction was also found. Finally, based on our present and previous results, a model of OsPR1 expression/regulation has been proposed, which reveals their essential role in defence/stress responses in rice and use as potent gene markers.  相似文献   

14.
Singh J  Roberts MR 《Planta》2004,219(2):261-269
Fusicoccin (FC), an activator of the plant plasma membrane H+-ATPase, induces several components of plant pathogen resistance responses, including defence hormone biosynthesis and pathogenesis-related (PR) gene expression. The mechanism by which these responses occur, and the effect they have on plant–pathogen interactions is unknown. Here, we show that PR gene expression in response to FC in tomato (Lycopersicon esculentum Mill.) plants does not strictly require the common defence hormones, salicylic acid, jasmonic acid and ethylene. We also show that FC-induced PR gene expression requires neither Ca2+ nor reactive oxygen species, typical early pathogen-resistance response signals. The possibility that PR gene expression is related to FC-induced dehydration stress is also discounted. Finally, we show that the defence responses elicited by FC in tomato are not sufficient to confer resistance to the bacterial pathogen Pseudomonas syringae. Rather, FC increases the rate and severity of disease symptom formation in an ethylene-dependent manner.Abbreviations DPI Diphenylene iodonium - EGTA Ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FC Fusicoccin - HR Hypersensitive response - INA 2,6-Dichloroisonicotinic acid - JA Jasmonic acid - PM Plasma membrane - ROS Reactive oxygen species - PR Pathogenesis-related - SA Salicylic acid  相似文献   

15.
Botrytis blight, caused by Botrytis cinerea (Bc), is an important disease on roses grown in plastic greenhouses in Brazil. Biocontrol with Clonostachys rosea (Cr) applied to leaves and crop debris to reduce pathogen sporulation can complement other control measures for disease management. Two experiments, each with a rose cultivar, were conducted in a plastic greenhouse. For ‘Red Success,’ four treatments were compared: (1) control; (2) fortnightly sprays of Cr; (3) weekly sprays of mancozeb; and (4) weekly sprays of either Cr or mancozeb to the lower third of the plants and the debris. For ‘Sonia,’ treatment 4 was not included. Samples were taken from debris (leaves and petals) at ten 15-day intervals and plated on PCA medium. Sporulation of fungi and incidence of Botrytis blight on buds were assessed. For both cultivars, C treatments significantly (P=0.05) reduced Bc sporulation. However, disease incidence was not consistently reduced, probably because the applications of C. rosea started when Botrytis blight epidemic was advanced and no sanitation practices were performed on nontreated plots. From the present and previous studies, continuous application of Cr on debris, associated with sanitation practices, has the potential to reduce Bc sporulation and disease incidence in the buds.  相似文献   

16.
Endophytic actinobacteria isolated from healthy cereal plants were assessed for their ability to control fungal root pathogens of cereal crops both in vitro and in planta. Thirty eight strains belonging to the genera Streptomyces, Microbispora, Micromonospora, and Nocardioidies were assayed for their ability to produce antifungal compounds in vitro against Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease in wheat, Rhizoctonia solani and Pythium spp. Spores of these strains were applied as coatings to wheat seed, with five replicates (25 plants), and assayed for the control of take-all disease in planta in steamed soil. The biocontrol activity of the 17 most active actinobacterial strains was tested further in a field soil naturally infested with take-all and Rhizoctonia. Sixty-four percent of this group of microorganisms exhibited antifungal activity in vitro, which is not unexpected as actinobacteria are recognized as prolific producers of bioactive secondary metabolites. Seventeen of the actinobacteria displayed statistically significant activity in planta against Ggt in the steamed soil bioassay. The active endophytes included a number of Streptomyces, as well as Microbispora and Nocardioides spp. and were also able to control the development of disease symptoms in treated plants exposed to Ggt and Rhizoctonia in the field soil. The results of this study indicate that endophytic actinobacteria may provide an advantage as biological control agents for use in the field, where others have failed, due to their ability to colonize the internal tissues of the host plant.  相似文献   

17.
[背景]根腐病在青稞生产中的危害日趋严重,阻碍了青稞根腐病的有效防控及青海省青稞产业的发展。然而人们对青稞根腐病的研究甚少且病原菌不详。[目的]明确青稞根腐病发生的危害、病原及致病性,为青稞根腐病的防控提供理论依据。[方法]采用常规的组织分离法分离青稞根腐病病原,通过形态鉴定与分子鉴定结合的方法对病原进行鉴定,并采用烧杯水琼脂法测定其致病性。[结果]共分离得到4株青稞根腐病病原菌,鉴定为Clonostachys rosea,有较强的致病性且致病性差异显著,经柯赫氏法则验证为青稞根腐病病原菌,并且是一种新的青稞根腐病病原,该类根腐病也是一种新的根腐类病害,在国内外属首次发现。[结论]Clonostachys rosea可引起青稞根腐病且致病性强。  相似文献   

18.
Six isolates of Trichoderma were screened for antagonism to Armillaria in tea stem sections buried in the soil. The inability of Armillaria to invade Trichoderma-colonized stem sections and the reduction of its viability in the plant materials following invasion of these by Trichoderma were used as indicators of antagonism. Four isolates of the species Trichoderma harzianum significantly (P<0.001) reduced the incidence of the pathogen in the plant materials. Isolate T4 completely eliminated the pathogen from plant materials in sterile soil and also antagonized two different isolates of the pathogen in nonsterile soil. Application of this T. harzianum isolate to the soil as a wheat bran culture significantly (P<0.001) reduced viability of Armillaria in woody blocks of inoculum. Soil amendment with coffee pulp also reduced the inoculum viability but did not affect the incidence of Trichoderma in the blocks of inoculum. We conclude that the direct application of wheat bran-formulated T. harzianum into soil surrounding woody Armillaria inoculum sources can suppress the pathogen. Further, no organic amendment is needed to enhance development of the antagonist in the soil as a pre-requisite to suppressing the pathogen.  相似文献   

19.
To investigate the variations of the enzymes responsible for lignification, after inoculation with Phytophthora capsici and/or Paenibacillus illinoisensis KJA-424, in relation to biocontrol of Phytophthora blight in pepper, roots of two-month-old plants were inoculated with P. capsici inoculation (P), and co-inoculation of P. capsici and P. illinoisensis cell cultures (P + A). Root mortality of pepper plants induced by inoculation of P. capsici was completely recovered by co-inoculation with antagonistic KJA-424. At day 7, peroxidase (POD) activity increased by 36.7% in P-treated roots but by 7.1% only in P + A-treated, compared with control. Polyphenol oxidase (PPO) activity increased for 3 days and then drastically decreased in P-treated roots but maintained a constant level in control and P + A-treated. At day 7, PPO activity in P-treated leaves decreased but recovered to the level of control in the P + A-treated. Three major POD isozymes (45, 53, and 114 kDa) were shown in P-treated roots, while two major (53 and 114 kDa) in control and P + A-treated, suggesting that the 45 kDa of POD was actively induced in P-treated roots but not induced in P + A-treated roots. A PPO isozyme of 80 kDa was induced in P-treated roots but not induced by co-treated with KJA-424. In leaves, the POD isozyme of 45 kDa appears to be systemically induced in P-treated only. The PPO isozyme of 80 kDa in leaves was not induced by pathogen challenge but recovered by co-inoculated with P. illinoisensis. All these results suggest that the inoculation of an antagonist, P. illinoisensis alleviates root mortality, activates of lignification-related enzymes and induction of the isozymes in pepper plants infected by P. capsici.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号