首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation by glucose and insulin of the muscle-specific facilitative glucose transport system GLUT-4 was investigated in L6 muscle cells in culture. Hexose transport activity, mRNA expression, and the subcellular localization of the GLUT-4 protein were analyzed. As observed previously (Walker, P. S., Ramlal, T., Sarabia, V., Koivisto, U.-M., Bilan, P. J., Pessin, J. E., and Klip, A. (1990) J. Biol. Chem. 265, 1516-1523), 24 h of glucose starvation and 24 h of insulin treatment each increase glucose transport activity severalfold. Here we report a differential regulation of the GLUT-4 and GLUT-1 transport systems under these conditions. (a) The level of GLUT-4 mRNA was not affected by glucose starvation and was diminished by prolonged (24 h) administration of insulin; in contrast, the level of GLUT-1 mRNA was elevated under both conditions. (b) Glucose starvation and prolonged insulin administration increased the amount of both GLUT-4 and GLUT-1 proteins in the plasma membrane. (c) In intracellular membranes, glucose starvation elevated, and prolonged insulin administration reduced, the GLUT-4 protein content. In contrast, the GLUT-1 protein content in these membranes decreased with glucose starvation and increased with insulin treatment. Glucose transport was rapidly curbed upon refeeding glucose to glucose-starved cells, with half-maximal reversal after 30 min and maximal reversal after 4 h. This was followed by a marked decrease in the levels of GLUT-1 mRNA without major changes in GLUT-4 mRNA. Neither 2-deoxy-D-glucose nor 3-O-methyl-D-glucose could substitute for D-glucose in these effects. It is proposed that glucose and insulin differentially regulate the two glucose transport systems in L6 muscle cells and that the rapid down-regulation of hexose transport activity by glucose is regulated by post-translational mechanisms.  相似文献   

2.
GLUT-4 is the major facilitative glucose transporter isoform in tissues that exhibit insulin-stimulated glucose transport. Insulin regulates glucose transport by the rapid translocation of GLUT-4 from an intracellular compartment to the plasma membrane. A critical feature of this process is the efficient exclusion of GLUT-4 from the plasma membrane in the absence of insulin. To identify the amino acid domains of GLUT-4 which confer intracellular sequestration, we analyzed the subcellular distribution of chimeric glucose transporters comprised of GLUT-4 and a homologous isoform, GLUT-1, which is found predominantly at the cell surface. These chimeric transporters were transiently expressed in CHO cells using a double subgenomic recombinant Sindbis virus vector. We have found that wild-type GLUT-4 is targeted to an intracellular compartment in CHO cells which is morphologically similar to that observed in adipocytes and muscle cells. Sindbis virus-produced GLUT-1 was predominantly expressed at the cell surface. Substitution of the GLUT-4 amino-terminal region with that of GLUT-1 abolished the efficient intracellular sequestration of GLUT-4. Conversely, substitution of the NH2 terminus of GLUT-1 with that of GLUT-4 resulted in marked intracellular sequestration of GLUT-1. These data indicate that the NH2-terminus of GLUT-4 is both necessary and sufficient for intracellular sequestration.  相似文献   

3.
Sphingomyelin pathway has been linked with insulin signaling through insulin-dependent GLUT-4 glucose transporter, but a relationship between sphingomyelin and the GLUT-1 transporter responsible for the basal (insulin-independent) glucose transport has not been clearly established. As GLUT-1 is mainly distributed to the cell surface, we explored the effects of changes in membrane sphingomyelin content on glucose transport through GLUT-1. The addition of exogenous sphingomyelin or glutathione (an inhibitor of endogenous sphingomyelinase) to the culture medium increased membrane sphingomyelin and cholesterol contents. Basal glucose uptake was enhanced and positively correlated to sphingomyelin (SM), cholesterol (CL) and SM/CL ratio. The exposure of 3T3-L1 preadipocytes to sphingomyelinase (SMase) significantly increased basal glucose uptake, membrane fluidity and decreased membrane sphingomyelin and cholesterol contents 60 min after SMase addition. There was no significant change in the abundance of GLUT-1 at the cell surface. The membrane sphingomyelin and cholesterol contents, fluidity and basal glucose transport returned to baseline levels within 2 h. The basal glucose uptake was negatively correlated with cholesterol contents and positively with SM/CL ratio. The SM/CL ratio might represent an important parameter controlling basal glucose uptake and a mechanism by which insulin resistance might be induced.  相似文献   

4.
Insulin is thought to exert its effects on cellular function through the phosphorylation or dephosphorylation of specific regulatory substrates. We have analyzed the effects of okadaic acid, a potent inhibitor of type 1 and 2A protein phosphatases, on the ability of insulin to stimulate glucose transport in rat adipocytes. Insulin and okadaic acid caused a 20-25- and a 3-6-fold increase, respectively, in the rate of 2-deoxyglucose accumulation by adipose cells. When added to cells previously treated with okadaic acid, insulin failed to stimulate 2-deoxyglucose accumulation beyond the levels observed with okadaic acid alone. Treatment of cells with okadaic acid did not inhibit the effect of insulin to stimulate tyrosine autophosphorylation of its receptor. These results indicate that okadaic acid potently inhibits the effects of insulin to stimulate glucose uptake and/or utilization at a step after receptor activation. To clarify the mechanism of inhibition by okadaic acid, the intrinsic activity of the plasma membrane glucose transporters was analyzed by measuring the rate of uptake of 3-O-methylglucose by adipose cells, and the concentration of adipocyte/skeletal muscle isoform of the glucose transporter (GLUT-4) in plasma membranes isolated from these cells. Insulin caused a 15-20-fold stimulation of 3-O-methylglucose uptake and a 2-3-fold increase in the levels of GLUT-4 detected by immunoblotting of isolated plasma membranes; okadaic acid caused a 2-fold increase in 3-O-methylglucose uptake, and a 1.5-fold increase in plasma membrane GLUT-4. Pretreatment of cells with okadaic acid blocked the effect of insulin to stimulate 3-O-methylglucose uptake and to increase the plasma membrane concentration of GLUT-4 beyond the levels observed with okadaic acid alone. These results indicate that the effect of okadaic acid to inhibit the effect of insulin on glucose uptake is exerted at a step prior to the recruitment of glucose transporters to the cell surface, and suggest that a phosphatase activity may be critical for this process.  相似文献   

5.
Regulation of glucose transport in skeletal muscle.   总被引:3,自引:0,他引:3  
The entry of glucose into muscle cells is achieved primarily via a carrier-mediated system consisting of protein transport molecules. GLUT-1 transporter isoform is normally found in the sarcolemmal (SL) membrane and is thought to be involved in glucose transport under basal conditions. With insulin stimulation, glucose transport is accelerated by translocating GLUT-4 transporters from an intracellular pool out to the T-tubule and SL membranes. Activation of transporters to increase the turnover number may also be involved, but the evidence is far from conclusive. When insulin binds to its receptor, it autophosphorylates tyrosine and serine residues on the beta-subunit of the receptor. The tyrosine residues are thought to activate tyrosine kinases, which in turn phosphorylate/activate as yet unknown second messengers. Insulin receptor antibodies, however, have been reported to increase glucose transport without increasing kinase activity. Insulin resistance in skeletal muscle is a major characteristic of obesity and diabetes mellitus, especially NIDDM. A decrease in the number of insulin receptors and the ability of insulin to activate receptor tyrosine kinase has been documented in muscle from NIDDM patients. Most studies report no change in the intracellular pool of GLUT-4 transporters available for translocation to the SL. Both the quality and quantity of food consumed can regulate insulin sensitivity. A high-fat, refined sugar diet, similar to the typical U.S. diet, causes insulin resistance when compared with a low-fat, complex-carbohydrate diet. On the other hand, exercise increases insulin sensitivity. After an acute bout of exercise, glucose transport in muscle increases to the same level as with maximum insulin stimulation. Although the number of GLUT-4 transporters in the sarcolemma increases with exercise, neither insulin or its receptor is involved. After an initial acute phase, which may involve calcium as the activator, a secondary phase of increased insulin sensitivity can last for up to a day after exercise. The mechanism responsible for the increased insulin sensitivity with exercise is unknown. Regular exercise training also increases insulin sensitivity, which can be documented several days after the final bout of exercise, and again the mechanism is unknown. An increase in the muscle content of GLUT-4 transporters with training has recently been reported. Even though significant progress has been made in the past few years in understanding glucose transport in skeletal muscle, the mechanisms involved in regulating transport are far from being understood.  相似文献   

6.
Glucosamine induced insulin resistance in 3T3-L1 adipocytes, which was associated with a 15% decrease in cellular ATP content. To study the role of ATP depletion in insulin resistance, we employed sodium azide (NaN3) and dinitrophenol (DNP), which affect mitochondrial oxidative phosphorylation, to achieve a similar 15% ATP depletion. Unlike glucosamine, NaN3 and DNP markedly increased basal glucose transport, and the increased basal glucose transport was associated with increased GLUT-1 content in the plasma membrane without changes in total GLUT-1 content. These agents, like glucosamine, did not affect the early insulin signaling that is implicated in insulin stimulation of glucose transport. In cells with a severe 40% ATP depletion, basal glucose transport was similarly elevated, and insulin-stimulated glucose transport was similar in cells with 15% ATP depletion. In these cells, however, early insulin signaling was severely diminished. These data suggest that cellular ATP depletion by glucosamine, NaN3, and DNP exerts differential effects on basal and insulin-stimulated glucose transport and that ATP depletion per se does not induce insulin resistance in 3T3-L1 adipocytes.  相似文献   

7.
Summary In rat adipocytes, the insulin stimulation of the rate of glucose uptake is due, at least partially, to the recruitment of glucose transporter proteins from an intracellular compartment to the plasma membrane.Vanadate is a known insulin mimetic agent and causes an increase in the rate of glucose transport in rat adipocytes similar to that seen with insulin. The objective of the present study was to determine whether vanadate exerts its effect through the recruitment of glucose transporters to the plasma membrane.We report that under conditions where vanadate stimulates the rate of 2-deoxyglucose uptake to the same extent as insulin, the concentration of GLUT-4 in the plasma membrane was increased similarly by both insulin and vanadate, and its concentration was decreased in the low density microsomal fraction. These results suggest that vanadate induces the recruitment of GLUT-4 to the plasma membrane. The effects of vanadate and insulin on the stimulation of 2-deoxyglucose uptake and recruitment of GLUT-4 were not additive.This is the first report of an effect of vanadate on the intracellular distribution of the glucose transporter.  相似文献   

8.
Whey protein (WP) and whey protein hydrolysate (WPH) have the recognized capacity to increase glycogen stores. The objective of this study was to verify if consuming WP and WPH could also increase the concentration of the glucose transporters GLUT-1 and GLUT-4 in the plasma membrane (PM) of the muscle cells of sedentary and exercised animals. Forty-eight Wistar rats were divided into 6 groups (n = 8 per group), were treated and fed with experimental diets for 9 days as follows: a) control casein (CAS); b) WP; c) WPH; d) CAS exercised; e) WP exercised; and f) WPH exercised. After the experimental period, the animals were sacrificed, muscle GLUT-1 and GLUT-4, p85, Akt and phosphorylated Akt were analyzed by western blotting, and the glycogen, blood amino acids, insulin levels and biochemical health indicators were analyzed using standard methods. Consumption of WPH significantly increased the concentrations of GLUT-4 in the PM and glycogen, whereas the GLUT-1 and insulin levels and the health indicators showed no alterations. The physical exercise associated with consumption of WPH had favorable effects on glucose transport into muscle. These results should encourage new studies dealing with the potential of both WP and WPH for the treatment or prevention of type II diabetes, a disease in which there is reduced translocation of GLUT-4 to the plasma membrane.  相似文献   

9.
The effects of fluorescein isothiocyanate II (FITC) on the actions of insulin in rat adipocytes were studied. When adipocytes were incubated with FITC at pH 7.4 (2 mM agent, 8 min), the cells were completely deprived of their specific insulin-binding activity and rendered unresponsive to the hormone. The effect of FITC on the insulin-binding activity was milder at pH 9.0, and cAMP phosphodiesterase in cells exposed to FITC at pH 9.0 was maximally stimulated if the insulin concentration was increased to 100 nM. Under identical conditions, however, glucose transport activity was rendered not only less sensitive but also less responsive to the hormone. When FITC was added to cells after insulin at pH 9.0, the glucose transport activity that had been stimulated by the hormone was considerably reduced. This reduction was largely, but not entirely, prevented if the cells were deprived of ATP, suggesting that FITC (a) elicited the ATP-dependent reversal of the hormonal effect and, simultaneously, (b) mildly inhibited the transport activity per se. Western blot assay of GLUT-4 (a major isoform of glucose transporter in adipocytes) indicated that FITC (a) partially blocked insulin-dependent translocation of GLUT-4 from the intracellular site to the plasma membrane while it (b) induced a mild "insulin-like" effect. It is concluded that FITC at pH 9.0 (a) renders both glucose transport and phosphodiesterase activities less insulin sensitive presumably by modifying the cellular hormone receptor and (b) makes glucose transport activity less responsive to insulin presumably by (i) blocking hormone-dependent translocation of glucose transporter and (ii) mildly inhibiting intrinsic glucose transport activity.  相似文献   

10.
The rates of glucose transport and of glycolysis and the expression of the glucose transporters GLUT-1 through GLUT-4 were measured in T47D human breast cancer cells that underwent differentiation by retinoic acid. Glucose transport was found to be the rate-limiting step of glycolysis in control and differentiated cells. The transporters GLUT-1, GLUT-3, and GLUT-4 were present in the cell membrane and in the cytoplasm, and GLUT-2 was present solely in the cytoplasm. Differentiation led to a reduction in GLUT-1 and to an increase in cytoplasmic GLUT-2 and GLUT-3 with no change in GLUT-4. Differentiation also caused a reduction in the maximal velocity of glucose transport by approximately 40% without affecting the Michaelis-Menten constant of glucose transport. These changes did not alter the steady-state concentration of the phosphate metabolites regulating cell energetics but increased the content of phospholipid breakdown phosphodiesters. In conclusion, differentiation of human breast cancer cells appears to be associated with decreased glycolysis by a mechanism that involves a reduction in GLUT-1 and a slowdown of glucose transport.  相似文献   

11.
Facilitative glucose transporters exhibit variable hexose affinity and tissue-specific expression. These characteristics contribute to specialized metabolic properties of cells. Here we describe the characterization of a novel glucose transporter-like molecule, GLUT-12. GLUT-12 was identified in MCF-7 breast cancer cells by homology to the insulin-regulatable glucose transporter GLUT-4. The GLUT-12 cDNA encodes 617 amino acids, which possess features essential for sugar transport. Di-leucine motifs are present in NH(2) and COOH termini at positions similar to the GLUT-4 FQQI and LL targeting motifs. GLUT-12 exhibits 29% amino acid identity with GLUT-4 and 40% to the recently described GLUT-10. Like GLUT-10, a large extracellular domain is predicted between transmembrane domains 9 and 10. Genomic organization of GLUT-12 is highly conserved with GLUT-10 but distinct from GLUTs 1-5. Immunofluorescence showed that, in the absence of insulin, GLUT-12 is localized to the perinuclear region in MCF-7 cells. Immunoblotting demonstrated GLUT-12 expression in skeletal muscle, adipose tissue, and small intestine. Thus GLUT-12 is potentially part of a second insulin-responsive glucose transport system.  相似文献   

12.
We have previously demonstrated that insulin stimulates glycerolipid synthesis and phospholipid hydrolysis in BC3H-1 myocytes, resulting in the generation of membrane diacylglycerol, a known cellular mediator. This led us to the original proposal that diacylglycerol may contribute to the mediation of insulin action, especially stimulation of glucose transport. The fact that agents such as phenylephrine and phorbol esters, which increase or act as membrane diacylglycerols, are fully active in stimulating glucose transport in this tissue lent further support to this proposal. In this paper, we demonstrate that the diacylglycerol analogues PMA (4 beta-phorbol 12-myristate 13-acetate) and mezerein (both possessing 12 beta- and 13 alpha-O-linked substituents as well as a 4 beta-hydroxyl group) each increase the Vmax of the glucose transporter as does insulin. Diacylglycerol generated by the addition of phospholipase C also stimulates glucose uptake to a maximum which is equal and nonadditive to that of insulin, while addition of the narrowly active phosphatidylinositol-specific phospholipase C which generates the putative phosphoinositol-glycan mediator of Saltiel et al. (Saltiel, A., Fox, J., She Lin, P., and Cutrecasas, P. (1986) Science 233, 967-972) stimulates pyruvate dehydrogenase in these cells without any effect on glucose uptake. Pretreatment of the myocytes with PMA resulted in desensitization of subsequent glucose uptake to stimulation by phenylephrine, but had no effect on stimulation of glucose uptake by phospholipase C or by insulin, indicating that PMA pretreatment primarily desensitizes agonist-induced polyphosphoinositide hydrolysis which, as we have previously shown, is not involved in the insulin-induced generation of diacylglycerol. This was confirmed by the absence of intracellular Ca2+ mobilization during insulin administration, as measured by the sensitive fluorescent probe fura-2 in attached monolayer BC3H-1 myocytes. Furthermore, we have shown that insulin-generated diacylglycerol satisfies several criteria for a mediator of insulin action, including the demonstration that insulin-stimulated endogenous diacylglycerol generation is antecedent to glucose transport and has an identical insulin dose-response curve and moreover that the magnitude and time course of subsequent stimulation of glucose transport is reproduced by the addition of the simple exogenous diacylglyerol, dioctanoylglycerol, in the complete absence of the hormone. These results establish a central role for insulin-induced glycerolipid metabolism in mediating insulin-stimulated glucose transport in BC3H-1 myocytes.  相似文献   

13.
In order to delineate the insulin-independent (constitutive) and insulin-dependent regulations of the plasma membrane glucose transporter concentrations in rat adipocytes, we introduced purified human erythrocyte GLUT-1 (HEGT) into rat adipocytes by poly(ethylene glycol)-induced vesicle-cell fusion and its transport function and subcellular distribution in the host cell were measured. HEGT in adipocytes catalysed 3-O-methylglucose equilibrium exchange with a turnover number that is indistinguishable from that of the basal adipocyte transporters. However, insulin did not stimulate significantly the HEGT function in adipocytes where it stimulated the native transporter function by 7-8-fold. The steady state distribution and the transmembrane orientation assays revealed that more than 85% of the HEGT that were inserted in the physiological, cytoplasmic side-in orientation at the adipocytes plasma membrane were moved into low-density microsomes (LDM), while 90% of the HEGT that were inserted in the wrong, cytoplasmic side-out orientation were retained in the plasma membrane. Furthermore, more than 70% of the LDM-associated HEGT were found in a small subset of LDM that also contained 80% of the LDM-associated GLUT-4, the insulin-regulatable, native adipocyte glucose transporter. However, insulin did not cause redistribution of HEGT from LDM to the plasma membrane under the condition where it recruited GLUT-4 from LDM to increase the plasma membrane GLUT-4 content 4-5-fold. These results demonstrate that the erythrocyte GLUT-1 introduced in adipocytes transports glucose with an intrinsic activity similar to that of the adipocyte GLUT-1 and/or GLUT-4, and enters the constitutive GLUT-4 translocation pathway of the host cell provided it is in physiological transmembrane orientation, but fails to enter the insulin-dependent GLUT-4 recruitment pathway. We suggested that the adipocyte plasma membrane glucose transporter concentration is constitutively kept low by a mechanism where a cell-specific constituent interacts with a cytoplasmic domain common to GLUT-1 and GLUT-4, while the insulin-dependent recruitment requires a cytoplasmic domain specific to GLUT-4.  相似文献   

14.
In order to delineate the insulin-independent (constitutive) and inssulin-dependent regulations of the plasma membrane glucose transporter concentrations in rat adipocytes, we introduced purified human erythrocyte GLUT-1 (HEGT) into rat adipocytes by poly(ethylene glycol)-induced vesicle-cell fusion and its transport function and subcellular distribution in the host cell were measured. HEGT in adipocytes catalysed 3-O-methylglucose equilibrium exchange with a turnover number that is indistinguishable from that of the basal adipocyte transporters. However, insulin did not stimulate significantly the HEGT function in adipocytes where it stimulated the native transporter function by 7-8-fold. The steady state distribution and the transmembrane orientation assays revealed that more than 85% of the HEGT that were inserted in the physiological, cytoplasmic side-in orientation at the adipocytes plasma membrane were moved into low-density microsomes (LDM), while 90% of the HEGT that were inserted in the wrong, cytoplasmic side-out orientation were retained in the plasma membrane. Furthermore, more than 70% of the LDM-associated HEGT were found in a small subset of LDM that also contained 80% of the LDM-associated GLUT-4, the insulin-regulatable, native adipocyte glucose transporter. However, insulin did not cause redistribution of HEGT from LDM to the plasma membrane under the condition where it recruited GLUT-4 from LDM to increase the plasma membrane GLUT-4 content 4–5-fold. These results demonstrate that the erythrocyte GLUT-1 introduced in adipocytes transports glucose with an intrinsic activity similar to that of the adipocyte GLUT-1 and/or GLUT-4, and enters the constitutive GLUT-4 translocation pathway of the host cell provided it is in physiological transmembrane orientation, but fails to enter the insulin-dependent GLUT-4 recruitment pathway. We suggested that the adipocyte plasma membrane glucose transporter concentration is constitutively kept low by a mechanism where a cell-specific constitutent interacts with a cytoplasmic domain common to GLUT-1 and GLUT-4, while the insulin-dependent recruitment requires a cytoplasmic domain specific to GLUT-4.  相似文献   

15.
We examined the effect of insulin on fetal/neonatal rat skeletal muscle GLUT-1 and GLUT-4 concentrations and subcellular distribution by employing immunohistochemical analysis and subcellular fractionation followed by Western blot analysis. We observed that insulin did not alter total GLUT-1 or GLUT-4 concentrations or the GLUT-1 subcellular distribution in fetal/neonatal or adult skeletal muscle in 60 min. The basal and insulin-induced changes in subcellular distribution of GLUT-4 were different between the fetal/neonatal and adult skeletal muscle. Under basal conditions, sarcolemma-associated GLUT-4 was higher in the newborn compared with the adult, translating into a higher glucose transport. In contrast, insulin-induced translocation of GLUT-4 to the sarcolemma- and insulin-induced glucose transport was lower in the newborn compared with the adult. This age-related change results in enhanced basal glucose transport to fuel myocytic proliferation and differentiation while relatively curbing the insulin-dependent glucose transport in the newborn.  相似文献   

16.
High-level expression of the low-Km glucose transporter isoform GLUT-1 is characteristic of many cultured tumor and oncogene-transformed cells. In this study, we tested whether induction of GLUT-1 occurs in tumors in vivo. Normal mouse beta islet cells express the high-Km (approximately 20 mM) glucose transporter isoform GLUT-2 but not the low-Km (1 to 3 mM) GLUT-1. In contrast, a beta cell line derived from an insulinoma arising in a transgenic mouse harboring an insulin-promoted simian virus 40 T-antigen oncogene (beta TC3) expressed very low levels of GLUT-2 but high levels of GLUT-1. GLUT-1 protein was not detectable on the plasma membrane of islets or tumors of the transgenic mice but was induced in high amounts when the tumor-derived beta TC3 cells were grown in tissue culture. GLUT-1 expression in secondary tumors formed after injection of beta TC3 cells into mice was reduced. Thus, high-level expression of GLUT-1 in these tumor cells is characteristic of culture conditions and is not induced by the oncogenic transformation; indeed, overnight culture of normal pancreatic islets causes induction of GLUT-1. We also investigated the relationship between expression of the different glucose transporter isoforms by islet and tumor cells and induction of insulin secretion by glucose. Prehyperplastic transgenic islet cells that expressed normal levels of GLUT-2 and no detectable GLUT-1 exhibited an increased sensitivity to glucose, as evidenced by maximal insulin secretion at lower glucose concentrations, compared with that exhibited by normal islets. Further, hyperplastic islets and primary and secondary tumors expressed low levels of GLUT-2 and no detectable GLUT-1 on the plasma membrane; these cells exhibited high basal insulin secretion and responded poorly to an increase in extracellular glucose. Thus, abnormal glucose-induced secretion of insulin in prehyperplastic islets in mice was independent of changes in GLUT-2 expression and did not require induction of GLUT-1 expression.  相似文献   

17.
To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a dose- and time-dependent manner (maximal effects at 50 mM glucosamine after 6 h). In these cells, glucosamine impaired insulin-stimulated GLUT-4 translocation. Glucosamine (6 h) did not affect insulin-stimulated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 and -2 and weakly, if at all, impaired insulin stimulation of phosphatidylinositol 3-kinase. Glucosamine, however, severely impaired insulin stimulation of Akt. Inhibition of insulin-stimulated glucose transport was correlated with that of Akt activity. In these cells, glucosamine also inhibited insulin stimulation of p70 S6 kinase. Glucosamine did not alter basal glucose transport and insulin stimulation of GLUT-1 translocation and mitogen-activated protein kinase. In summary, glucosamine induced complete and reversible insulin resistance in 3T3-L1 adipocytes. This insulin resistance was accompanied by impaired insulin stimulation of GLUT-4 translocation and Akt activity, without significant impairment of upstream molecules in insulin-signaling pathway.  相似文献   

18.
The acutestimulation of glucose uptake by insulin in fat and muscle cells isprimarily the result of translocation of facilitative glucosetransporter 4 (GLUT-4) from an internal compartment to the plasmamembrane. Here, we investigate the role of SNAP23 (a 23-kDa moleculeresembling the 25-kDa synaptosome associated protein) in GLUT-4translocation and glucose uptake in 3T3-L1 adipocytes. Microinjectionof a polyclonal antibody directed to the carboxy terminus of SNAP23inhibited GLUT-4 incorporation into the membrane in response toinsulin, whereas microinjection of full-length recombinant SNAP23enhanced the insulin effect. Introduction of recombinant SNAP23 intochemically permeabilized cells also enhanced insulin-stimulated glucosetransport. These results indicate that SNAP23 is required forinsulin-dependent, functional incorporation of GLUT-4 into the plasmamembrane and that the carboxy terminus of the protein is essential forthis process. SNAP23 is therefore likely to be a fusion catalyst alongwith syntaxin-4 and vesicle-associated membrane protein (VAMP)-2.Furthermore, the endogenous content of SNAP23 appears tobe limiting for insulin-dependent GLUT-4 exposure at the cell surface.A measurable fraction of SNAP23 was sedimented with cytoskeletalelements when extracted with Triton X-100, unlike VAMP-2 andsyntaxin-4, which were exclusively soluble in detergent. We hypothesizethat SNAP23 and its interaction with the cytoskeleton may be targetsfor regulation of GLUT-4 traffic.  相似文献   

19.
A G Douen  T Ramlal  G D Cartee  A Klip 《FEBS letters》1990,261(2):256-260
Insulin and acute exercise (45 min of treadmill run) increased glucose uptake into perfused rat hindlimbs 5-fold and 3.2-fold, respectively. Following exercise, insulin treatment resulted in a further increase in glucose uptake. The subcellular distribution of the muscle glucose transporters GLUT-1 and GLUT-4 was determined in plasma membranes and intracellular membranes. Neither exercise nor exercise----insulin treatment altered the distribution of GLUT-1 transporters in these membrane fractions. In contrast, exercise, insulin and exercise----insulin treatment caused comparable increases in GLUT-4 transporters in the plasma membrane. The results suggest that exercise might limit insulin-induced GLUT-4 recruitment and that following exercise, insulin may alter the intrinsic activity of plasma membrane glucose transporters.  相似文献   

20.
Insulin stimulates glucose transport in adipocytes by translocation of the glucose transporter (GLUT-4) from an intracellular site to the cell surface. We have characterized different synaptobrevin/vesicle- associated membrane protein (VAMP) homologues in adipocytes and studied their intracellular distribution with respect to GLUT-4. VAMP-1, VAMP- 2, and cellubrevin cDNAs were isolated from a 3T3-L1 adipocyte expression library. VAMP-2 and cellubrevin were: (a) the most abundant isoforms in adipocytes, (b) detectable in all insulin responsive tissues, (c) translocated to the cell surface in response to insulin, and (d) found in immunoadsorbed GLUT-4 vesicles. To further define their intracellular distribution, 3T3-L1 adipocytes were incubated with a transferrin/HRP conjugate (Tf/HRP) and endosomes ablated following addition of DAB and H2O2. While this resulted in ablation of > 90% of the transferrin receptor (TfR) and cellubrevin found in intracellular membranes, 60% of GLUT-4 and 90% of VAMP-2 was not ablated. Immuno-EM on intracellular vesicles from adipocytes revealed that VAMP-2 was colocalized with GLUT-4, whereas only partial colocalization was observed between GLUT-4 and cellubrevin. These studies show that two different v-SNAREs, cellubrevin and VAMP-2, are partially segregated in different intracellular compartments in adipocytes, implying that they may define separate classes of secretory vesicles in these cells. We conclude that a proportion of GLUT-4 is found in recycling endosomes in nonstimulated adipocytes together with cellubrevin and the transferrin receptor. In addition, GLUT-4 and VAMP-2 are selectively enriched in a postendocytic compartment. Further study is required to elucidate the function of this latter compartment in insulin-responsive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号