首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous behavioural experiments showed that snapping shrimp lacking lateral antennular filaments, i.e. without chemosensory aesthetascs, lose the ability to distinguish between conspecifics that are inexperienced in fighting and former winners. A chemosensory dominance signal was assumed to be present, although other receptors unique to the lateral filaments may have been responsible for the behavioural changes. In the present study, the antennules of snapping shrimp were examined for differences between the lateral and medial antennule filaments to identify the modality of the dominance signal. We found six different types of setae and two types of pores. A new probably bimodal setal type is described, the broad long simple seta. Only the chemosensory aesthetascs and their associated hydrosensory companion setae are unique to the lateral filament. Thus we conclude that the dominance signal is chemical, because a hydrodynamic signal would be also received by the simple setae distributed on both filaments.  相似文献   

2.
Previous behavioural experiments showed that snapping shrimp lacking lateral antennular filaments, i.e. without chemosensory aesthetascs, lose the ability to distinguish between conspecifics that are inexperienced in fighting and former winners. A chemosensory dominance signal was assumed to be present, although other receptors unique to the lateral filaments may have been responsible for the behavioural changes. In the present study, the antennules of snapping shrimp were examined for differences between the lateral and medial antennule filaments to identify the modality of the dominance signal. We found six different types of setae and two types of pores. A new probably bimodal setal type is described, the broad long simple seta. Only the chemosensory aesthetascs and their associated hydrosensory companion setae are unique to the lateral filament. Thus we conclude that the dominance signal is chemical, because a hydrodynamic signal would be also received by the simple setae distributed on both filaments.  相似文献   

3.
The movements of the basis of maxilla 2 in Palaemon adspersus were examined using macro-video recordings, and the morphology of its setae was examined using both scanning and transmission electron microscopy. The basis of maxilla 2 performs stereotypical movements in the latero-medial plane and gently touches the food with a frequency of 3-5 Hz. The medial rim of the basis of maxilla 2 carries three types of seta. Type 1 is serrate, type 2 and 3 are serrulate, and type 2 has a prominent terminal pore. Type 2 is innervated by 18-25 sensory cells whose cilia protrude through the terminal pore and are in direct contact with the external environment. The structure of type 2 setae indicates that they are mainly gustatory, although still bimodal due to their innervation by presumed chemosensory and mechanosensory neurons. Distally, the three types of setae have a complex arrangement of the cuticle involving water-filled canals, which may serve to improve flexibility. Type 1 and 3 setae have fewer sensory cells (4-9) but probably also have a bimodal sensory function. The function of type 1 setae is probably to protect type 2 setae, while type 3 setae might serve to groom the ventral side of the basis of maxilla 1.  相似文献   

4.
In the kelp crab, Pugettia producta, flat plate setae cover all but the ventral surfaces of the walking leg dactyls. Dendrites enter the setal shaft located inside the plate superstructure, and extend to a region of the setal tip that contains a system of minute pores resembling the pore systems found in chemosensory sensilla of insects. Presumably, much of the chemosensitivity of the dactyls in the kelp crab is mediated by the plate setae. In the interior of the dactyl, supporting cells and the neurons innervating plate setae, other types of setae, and other presumptive sensilla form scolopidia. Large scolopidia, containing as many as 12 dendrites, appear to innervate some of the plate setae and also large ventral rodlike setae that might be chemosensory. Two of the dendrites of large scolopidia usually have more densely packed microtubules, longer ciliary axonemes, slightly larger rootlets, and dark A fibers with arms, characteristics indicative of mechanosensory function. Some dactyl setae, therefore, could be both mechanosensory and chemosensory. Small scolopidia containing two or three dendrites that exhibit mechanosensory characteristics appear to innervate small, rodlike setae, which presumably are strictly mechanosensory. The two types of structures located on the epicuticular cap, elliptical structures resembling campaniform sensilla and small cones in pits resembling CAP organs, appear to be dually innervated and presumably are mechanosensory, although other functions are possible. The internal positions of the scolopidia, together with the support afforded by an extracellular dendritic sheath, by the scolopale, and by desmosomelike and septate junctions, may serve to protect internal portions of setal dendrites, some of which appear to remain functional in nonmolting adults that have abraded setae.  相似文献   

5.
Although stomatopod crustaceans use their chemical senses in many facets of behavior, little is known about their chemosensory neural pathways, especially in comparison to the better-studied decapod crustaceans. We examined the stomatopod Neogonodactylus oerstedii to determine organizational aspects of peripheral and central neural pathway of antennules, which is a major chemosensory organ. We describe the three flagella of the triramous antennule as the medial, dorsolateral, and ventrolateral flagella. The primary branch point is between the medial flagellum and lateral flagella, and the secondary branch point is at the junction of the dorsolateral and ventrolateral flagella. The antennule bears at least three types of setae, based on their external morphology. Simple setae are present only on the medial flagellum and ventrolateral flagellum, organized as a tuft of 10-15 setae on each flagellar annulus. Aesthetasc setae and asymmetric setae occur only on the distal annuli of the dorsolateral flagellum, with each annulus bearing a row of three aesthetascs and one asymmetric seta. DiI fills of the antennular nerve near the junction of the flagella show that sensory neurons in the antennular flagella project to two neuropils in the ipsilateral midbrain-the olfactory lobe (OL) and lateral antennular neuropil (LAN). The OL is glomerular and has rich serotonergic innervation, a characteristic of the OL in decapods. The LAN is bi-lobed and stratified as it is in decapods. However, the LAN of stomatopods differs from that of decapods in being relatively large and containing extensive serotonergic innervation. The median antennular neuropil of stomatopods has sparse serotonergic innervation, and it is more diffusely organized compared to decapods. No accessory lobes were found in N. oerstedii. Thus, the stomatopod antennular flagella have the same two, highly organized parallel pathways common to decapods-the OL pathway and the LAN pathway.  相似文献   

6.
The clam shrimp family Lynceidae is unusual in possessing paired fields of short setae on either side of the rostral carina. We describe the position of these fields relative to the direction of water movement in live animals as well as the external and internal structure of these setae. The majority of morphological features support a presumed chemosensory role for these sensilla. These features include the lack of a setal socket and the relatively short length of each seta. The low number of enveloping cells (three or four) is uncharacteristic of chemosensory setae and is more typical of mechanoreceptors, as is the absence of any pores on the setae; these characteristics indicate that these fields may have both functions. © 1994 Wiley-Liss, Inc.  相似文献   

7.
During a systematic ultrastructural study on the endocrine/paracrine cells of the gastro-intestinal tract of ruminants, the aim of present work is to describe these cells in the abomasum of suckling calf. Taking into account all the cytological details, and especially the morphological appearance and the cytochemical reactivity of secretory granules, several endocrine cell types can be distinguished. Some of them (EC, D, D1) are common to all three of the glandular regions, whereas others are typical of cardiac and proper gastric glands: they are ECL, X, A-like and a fourth type, whose classification is uncertain. The last type (G cells) is detectable in pyloric glands only. The cardiac and proper gastric glands of the suckling calf abomasum contain two additional cell types, not present in bulls, A-like cells and the fourth type, and contain D1 cells which form a heterogeneous family. These data show a morphofunctional similarity between the abomasum of the suckling calf and the stomach of non-ruminant mammals.  相似文献   

8.
The crustacean cuticle has numerous projections and some of these projections, the setae, have important mechanical as well as sensory functions. The setae display a wide diversity in their external morphology, which has led to great problems separating setae from other projections in the cuticle and problems in making a consistent classification system. Here, the cuticular projections on the mouthparts of seven species of decapods are examined by scanning and transmission electron microscopy. A new definition is given: a seta is an elongate projection with a more or less circular base and a continuous lumen; the lumen has a semicircular arrangement of sheath cells basally. From the details of the external morphology the mouthpart setae are divided into seven types: pappose, plumose, serrulate, serrate, papposerrate, simple and cuspidate setae, which are suggested to reflect mechanical functions and not evolutionary history. This classification system is compared with earlier systems.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 142 , 233–252.  相似文献   

9.
The fifth pereiopods (P5) in Anomala are specialized appendages used mainly for grooming. We studied the articulated cuticular outgrowths, setae, on the distal segments of the P5 in 40 species from 18 Anomala families using light and scanning electron microscopy. Five general classes of setae can be found on the P5: serrate, serrulate and simple setae which all appear bristle-like, and tooth-like and scale-like cuspidate setae. We classified the bristle-like setae according to criteria of shape and the arrangement of distinct outgrowths – denticles and setules – on the shaft of the seta. In this way we were able to distinguish eleven mainly serrate and serrulate types of seta. Some setal types imply homology due to their distinctness and could thus help to solve problematic phylogenetic questions. One setal type, for example, is only present in pagurid hermit crabs and king crabs, which corroborates the theory that these two morphologically very dissimilar groups are, in fact, closely related.  相似文献   

10.
In the present study, some morphological structures of antennae, maxillary palps and caudal setae of fourth instar larvae of laboratory-reared phlebotomine sand flies (Lutzomyia longipalpis, L. migonei, L. evandroi, L. lenti, L. sericea, L. whitmani and L. intermedia) of the State of Ceará, Brazil, were examined under scanning electron microscopy. The antennal structures exhibited considerable variation in the morphology and position. A prominent digitiform distal segment has been observed only on the antenna of species of the subgenus Nyssomyia. The taxonomic relevance of this and other antennal structure is discussed. The papiliform structures found in the maxillae and the porous structures of the caudal setae of all species examined may have chemosensory function. Further studies with transmission electron microscopy are needed to better understand the physiological function of these external structures.  相似文献   

11.
The mouthparts of the spiny lobster Panulirus argus hold primarily two types of setae--simple setae and cuspidate setae. Mechanosensory neurons from these setae were examined by electrophysiological recordings. The population of simple setae contained two types of mechanosensory neurons: displacement-sensitive neurons, which responded to deflection at the setal base; and bend-sensitive neurons, which responded to bending of the setal shaft. Displacement-sensitive neurons, in general, responded phasically and only during actual displacement. Typically, their response changed with alteration of the direction, amplitude, and velocity/acceleration of the mechanical stimulus. Bend-sensitive neurons, in general, responded phaso-tonically and carried information on the direction and region of bending. This is the first experimental demonstration of bend sensitivity for arthropod setae. Cuspidate setae contain highly sensitive mechanosensory neurons; however, due to the rigid nature of these setae, whether they were bend sensitive or displacement sensitive could not be determined, and they were thus called "tactile neurons." Bend-sensitive neurons, but not displacement-sensitive neurons or tactile neurons, showed graded responses to changes in osmolarity. The osmosensitivity of these neurons could mediate behavioral responses to changes in the osmolarity of seawater or food.  相似文献   

12.
Crustaceans sample odorants by a rapid series of flicks of the two flagella composing the distal segments of each of the paired antennules. The lateral flagella contain aesthetasc sensilla that house unimodal chemosensory neurons. Nine types of nonaesthetasc setae with putative chemosensory and mechanosensory functions are distributed on the lateral and medial flagella. Sensory neurons in aesthetascs and nonaesthetasc sensilla terminate in separate regions of the brain, the olfactory lobe, and the lateral antennular neuropil, resulting in two odorant-processing pathways. Distilled water ablation of flagella and excision of specific setae were used to identify chemosensory sensilla mediating antennular flick behavior in Panulirus argus. The flick rates of sham-ablated and ablated or excised lobsters toward squid extract were compared. Complete attenuation of flick response to squid extract occurred as a result of (1) distilled water ablation of lateral flagella, (2) excision of aesthetascs and asymmetric sensilla, and (3) excision of aesthetascs. Distilled water ablation of medial flagella resulted in a mean flick rate 52% of that observed for sham-ablated lobsters toward squid extract. Flicking was unaffected by excision of asymmetric, guard, or companion sensilla. We propose that odorant mediation of flicking behavior requires both the aesthetasc and nonaesthetasc pathways.  相似文献   

13.
The morphology of the adrenal gland has been studied for a number of animal species all over the world, yet the detailed data about ostrich chick has not been reported. In the present study, the morphological features of the adrenal gland in African ostrich chicks were investigated by means of gross anatomy, light and electron microscope. Differences between the left and right adrenal glands were found in shape, size and location. The interrenal tissue and chromaffin cell interdigitated irregularly. The interrenal tissue was divided into a peripheral zone (PZ) and a central inner zone (CZ), and the PZ was further distinguished into an outer area (subcapsular zone, SCZ) and an inner area (IZ). The cellular arrangement in these zones showed evident zonation that resembled the mammalian. This phenomenon had been previously described only for the pelicanus. The cytoplasm of interrenal cells in SCZ was stained lightly than in IZ and CZ, and contained several vacuoles. Additionally, unlike CZ cells, SCZ cells appeared to contain more mitochondria and less lipid droplets. Two types of chromaffin cells: epinephrine cells and norepinephrine cells could be detected. The type 1 granules possessed a central core and a variable distance between membrane and core; the type 2 granules had an eccentric core, which leant to one side of granule and sticked to the membrane, giving a lager lacouna appearance in another side of the granule.  相似文献   

14.
Abstract. Lateral flagella of the antennules of scyllarid lobsters were examined for setal morphology and distribution via scanning electron microscopy. Setal distribution patterns were mapped directly for 3 regions of the antennule ( base, tuft , and tip ) and analyzed for differences: (1) between left and right antennules, (2) between males and females within a species, and (3) among species by comparing counts of setae per annulus in the ventral tuft region only. Six types of antennular setae were identified based on their external morphology: aesthetases, simple, modified simple, asymmetric, hemi-plumose, and toothbrush setae. These different types were organized in a clear pattern over the ventral and dorsal surfaces of the lateral flagella of the antennule. Aesthetase, asymmetric, modified simple, and hemi-plumose setae were found only on annuli in the tuft region between the distal and proximal ends of the flagellum. Simple setae were found on all annuli of all regions of the antennule, and toothbrush setae were mainly concentrated on all annuli of the base region and on proximal annuli of the tuft region . All species of scyllarids examined had the same general pattern of setal distribution and no differences were found between left and right, or male and female antennules. Similar setae located on the lateral antennules of species from the families Nephrophidae and Palinuridae (clawed and spiny lobsters) have been previously described as chemo- and/or mechanoreceptive for use in distance chemoreception (i.e., detection and orientation to olfactory stimuli). Based on work on clawed and spiny lobsters, we predict that the aesthetases on slipper lobsters have a chemoreceptive function and that simple and toothbrush setae may have a bimodal chemo- and mechanoreceptive function.  相似文献   

15.
The fine structure of the tibiotarsal and pretarsal sensory organs of Monobella grassei banyulensis Deharveng (Collembola : Neanuridae) has been examined by electron microscopy.Three types of sensory organs have been observed. (1) the most numerous setae of the tibiotarsus are classic mechanosensitive setae with one bipolar sensory cell, whose distal outer segment ends in a tubular body. (2) Two small setae are arranged on each side of the basal part of the claw; they show 3 sensory cells, 2 of which are mechanosensitive cells of the scolopidial type; the outer segments of the 2 mechanosensitive cells end at the base of the sensory hair. The dendrite of the 3rd sensory cell extends into the hair shaft. (3) Two similar chordotonal sensilla link the tibiotarsus and the pretarsus; each sensillum is composed of 2 bipolar sensory cells enveloped in sheath cells. The first type of sensory organ shows the characteristics of insect exteroceptive mechanosensitive hairs. The mechanosensitive cells of the 2nd and 3rd tibiotarsus sensory organs are probably proprioceptive and control the movements of the pretarsus in relation to the tibiotarsus. Two features are noteworthy: (1) the association of the scolopidial cells with a chemosensitive one has never been observed in other insect sensory organs, except in the Collembola; and (2) there is an important morphological diversity in the ciliary roots of the various scolopidial cells, which are in other respects very similar.  相似文献   

16.
The rostral epithelium of a newly metamorphosed juvenile of Branchiostoma floridae was examined at the EM level to confirm previous reports on its sensory cells. The majority of the sensory cells are of three types: two type I variants, with simple collars of unbranched microvilli surrounding their cilia, and one kind of type II cell, with an extended collar of repeatedly branched microvilli. The two type I variants differ in the structure and arrangement of the microvilli, basal body and rootlet, and the length of the cilium. Both variants are probably primary sensory cells (i.e. each has its own axon), but the data supporting this conclusion are much better for one variant than for the other. Type II cells are secondary sensory cells, with synaptic terminals borne on short extensions of the cell body. The presence of degenerating type II cells suggests that they may be subject to a regular process of loss and renewal. The results do not resolve the evolutionary issue of how amphioxus sensory cells relate to the epithelial sensory and receptor cells of vertebrates. Being primary, the type I cells resemble the supposed ancestral type more closely than do type II cells. Type II cells may be chemosensory, however, and should not be ruled out a priori as possible homologues of either primary or secondary chemosensory cells in vertebrates.  相似文献   

17.
Setae are vital in grooming activities and aiding in the removal of epibionts and sedimentary fouling from the body surfaces of decapod crustaceans. Thus, the setal structures and their arrangement on the grooming appendages and sensory structures of the commercially important shrimp, Macrobrachium rosenbergii, were examined using scanning electron microscopy. Macrobrachium rosenbergii is extensively grown in aquaculture and exhibits unique male morphological forms, termed morphotypes. The three male morphotypes are termed blue‐clawed males, orange‐clawed males, and small‐clawed or undifferentiated males and all three differ in their dominance, behavior, body morphology, and reproductive success. Seven setal types, two of which have never been described in the literature, are identified on the grooming appendages (third maxillipeds, first, second, and fifth pereopods) and antennae: simple, serrate, serrulate, spiniform, pappose, crinoid, and spinulate. The latter two setae are newly identified. Certain setal types, such as serrate and serrulate setae were located and associated with specific grooming appendages such as the first pereopods. The types of setae on the grooming appendages varied among females and male morphotypes and the novel setal types (crinoid and spinulate) were found only on two of the male morphotypes. A literature review of terminology related to the structure of setae and setal types in decapod crustaceans is offered as the usage of various terms is ambiguous and conflicting in the literature. The intention of this review is to provide future authors with a comprehensive collection of terms and images that can be used to describe various aspects of setal morphology in decapods. J. Morphol. 275:634–649, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
The labial gland in M. bellicosus corresponds with the acinar type, and occupies the greater part of meso- and metathorax. The acini comprise three secretory cell types, in addition to the central ductule cells and the epithelial cells that make up the efferent ducts. Cell types are mainly distinguished by the size and appearance of their secretory vesicles and the extent of the microvillar contact area with the ductule cells. They probably produce a proteinaceous secretion that may contain digestive enzymes. The labial gland acini in soldiers, on the other hand, contain only one type of secretory cell, which is not comparable with any of the cell types in the worker caste. This difference is in agreement with the multifunctional role of the labial gland according to the termites' polyethism.  相似文献   

19.
The genus Brevipalpus has over 300 species worldwide. The three most important agricultural pest species in the genus, Brevipalpus californicus (Banks), B. obovatus Donnadieu, and B. phoenicis (Geijskes), have been consistently confused and misidentified for more than 50 years. The present study provides a discussion of the characters and character states used to separate these mites. Low-temperature scanning electron microscopy and traditional light microscopy techniques were used to illustrate the subtle morphological differences between these three species. Morphology of the dorsal propodosoma, opisthosoma, and leg chaetotaxy of all three species was examined and compared. The number of dorsal setae, the number of solenidia (omega) on tarsus II, and dorsal cuticular patterns were the most important characters in the identification of Brevipalpus species. B. phoenicis is similar to B. californicus in having two omega on tarsus leg II and different from B. obovatus which has only one omega on tarsus leg II and similar to B. obovatus in having only one pair of F setae (f3), but differing from B. californicus which has two pairs of F setae (f2-3). The dorsal opisthosomal and propodisomal cuticular patterns frequently used to distinguish between these three species are useful but one must be aware that age, feeding, and mounting techniques can affect the appearance of these characters.  相似文献   

20.
Abstract. Decorator crabs (Brachyura: Majoidea) are known for attaching sessile organisms to specialized velcro-like hooked setae. Here we describe behavioral and morphological aspects of decorating for a common northern Pacific majoid, Oregonia gracilis . Members of O. gracilis decorate with a diverse array of sessile organisms. These are attached to hooked setae, and also physically interact with long, pappose setae that occur in the same body regions as hooked setae. We describe these pappose setae and document the occurrence of similar setae in 36 other decorating majoids across seven families. In O. gracilis , the density of pappose and hooked setae independently covary with decoration amount, which is sexually dimorphic—juveniles and adult females decorate heavily, whereas adult males decorate sparsely. Adult males have reduced numbers of hooked and pappose setae, but the ontogenetic patterns for the two setal types are different, suggesting that they are quasi-independent characters. We experimentally ablated pappose setae to ask if they functionally contribute to decorating in O. gracilis . Surprisingly, we found that pappose setae are not necessary for decorating under laboratory conditions. Pappose setae could play an auxiliary mechanical role or a sensory role in decorating, or may have another as-yet-unidentified function distinct from decorating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号