首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Haskó  György 《Neurochemical research》2001,26(8-9):1039-1044
The sympathetic nervous system plays a central role in establishing communication between the central nervous system and the immune system during inflammation. Inflammation activates the sympathetic nervous system, which causes release of the transmitters of the sympathetic nerv-ous system in the periphery. The transmitters of the sympathetic nervous system are the cate-cholamines noradrenaline and adrenaline and the purines ATP, adenosine, and inosine. Once these transmitters are released, they stimulate both presynaptic receptors on nerve terminals and post-synaptic receptors on immune cells. The receptors that are sensitive to catecholamines are termed adrenoceptors, whereas the receptors that bind purines are called purinoceptors. Stimulation of the presynaptic receptors exerts an autoregulatory effect on the release of transmitters. Ligation of the postsynaptic receptors on inflammatory cells modulates the inflammatory ac-tivities of these cells. The present review summarizes some of the most important aspects of the current state of knowledge about the interactions between the sympathetic nervous system and the immune system during inflammation with a special emphasis on the role of adreno and purinoceptors.  相似文献   

2.
The semaphorins     
Semaphorins are secreted, transmembrane, and GPI-linked proteins, defined by cysteine-rich semaphorin protein domains, that have important roles in a variety of tissues. Humans have 20 semaphorins, Drosophila has five, and two are known from DNA viruses; semaphorins are also found in nematodes and crustaceans but not in non-animals. They are grouped into eight classes on the basis of phylogenetic tree analyses and the presence of additional protein motifs. The expression of semaphorins has been described most fully in the nervous system, but they are also present in most, or perhaps all, other tissues. Functionally, semaphorins were initially characterized for their importance in the development of the nervous system and in axonal guidance. More recently, they have been found to be important for the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems. A common theme in the mechanisms of semaphorin function is that they alter the cytoskeleton and the organization of actin filaments and the microtubule network. These effects occur primarily through binding of semaphorins to their receptors, although transmembrane semaphorins also serve as receptors themselves. The best characterized receptors for mediating semaphorin signaling are members of the neuropilin and plexin families of transmembrane proteins. Plexins, in particular, are thought to control many of the functional effects of semaphorins; the molecular mechanisms of semaphorin signaling are still poorly understood, however. Given the importance of semaphorins in a wide range of functions, including neural connectivity, angiogenesis, immunoregulation, and cancer, much remains to be learned about these proteins and their roles in pathology and human disease.  相似文献   

3.
Parasitic nematode infection of humans and livestock is a major problem globally. Attempts to control nematode populations have led to the development of several classes of anthelmintic, which target cys-loop ligand-gated ion channels. Unlike the vertebrate nervous system, the nematode nervous system possesses a large and diversified array of ligand-gated chloride channels that comprise key components of the inhibitory neurotransmission system. In particular, cys-loop GABA receptors have evolved to play many fundamental roles in nematode behaviour such as locomotion. Analysis of the genomes of several free-living and parasitic nematodes suggests that there are several groups of cys-loop GABA receptor subunits that, for the most part, are conserved among nematodes. Despite many similarities with vertebrate cys-loop GABA receptors, those in nematodes are quite distinct in sequence similarity, subunit composition and biological function. With rising anthelmintic resistance in many nematode populations worldwide, GABA receptors should become an area of increased scientific investigation in the development of the next generation of anthelmintics.  相似文献   

4.
Purines such as ATP and adenosine participate in synaptic transmission in the enteric nervous system as neurotransmitters or neuromodulators. Purinergic receptors are localized on the cell bodies or nerve terminals of different functional classes of enteric neurons and, with other receptors, form unique receptor complements. Activation of purinergic receptors can regulate neuronal activity by depolarization, by regulating intracellular calcium, or by modulating second messenger pathways. Purinergic signaling between enteric neurons plays an important role in regulating specific enteric reflexes and overall gastrointestinal function. In the present article, we review evidence for purine receptors in the enteric nervous system, including P1 (adenosine) receptors and P2 (ATP) receptors. We will explore the role they play in mediating fast and slow synaptic transmission and in presynaptic inhibition of transmission. Finally, we will examine the molecular properties of the native receptors, their signaling mechanisms, and their role in gastrointestinal pathology.  相似文献   

5.
谷氨酸是中枢神经系统中最重要的兴奋性神经递质,其受体分为离子型和代谢型,受体激活后通过对Na+、K+、Ca2+等阳离子调节或通过与G蛋白偶联,从而激活一系列信号转导途径,参与记忆形成。药物成瘾是一种慢性、复发性脑疾病,以强迫性药物寻求以及丧失对药物使用控制能力为主要特征。研究表明谷氨酸受体与药物成瘾的发生发展有关,就谷氨酸受体在药物成瘾中作用的研究做一综述。  相似文献   

6.
Cannabinoids affect diverse biological processes, including functions of the immune system. With respect to the immune system, anti-inflammatory and immunosuppressive effects of cannabinoids have been reported. Cannabinoids stimulate G protein-coupled cannabinoid receptors CB1 and CB2. These receptors are found primarily on neurons. However, they are also found on dendritic cells (DC), which are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoids. We report in this study that cannabinoids reduced the DC surface expression of MHC class II molecules as well as their capacity to stimulate T cells. In the nervous system, CB1 receptor signaling modulates K(+) and Ca(2+) channels. Interestingly, cannabinoid-treated DC also showed altered voltage-gated potassium (K(V)) channel function. We speculate that attenuation of K(V) channel function via CB1 receptor signaling in DC may represent one mechanism by which cannabinoids alter DC function.  相似文献   

7.
Nicotinic receptors are cation-ion selective ligand-gated ion channels that are expressed throughout the nervous system. Most have significant calcium permeabilities, enabling them to regulate calcium-dependent events. One of the most abundant is a species composed of the alpha 7 gene product and having a relative calcium permeability equivalent to that of NMDA receptors. The alpha 7-containing receptors can be found presynaptically where they modulate transmitter release, and postsynaptically where they generate excitatory responses. They can also be found in perisynaptic locations where they modulate other inputs to the neuron and can activate a variety of downstream signaling pathways. The effects the receptors produce depend critically on the sites at which they are clustered. Instructive preparations for examining alpha 7-containing receptors are the rat hippocampus, where they are thought to play a modulatory role, and the chick ciliary ganglion, where they participate in throughput transmission as well as regulatory signaling. Relatively high levels of alpha 7-containing receptors are found in the two preparations, and the receptors display a variety of synaptic options and functions in the two cases. Progress is starting to be made in understanding the mechanisms responsible for localizing the receptors at specific sites and in identifying components tethered in the vicinity of the receptors that may facilitate signal transduction and downstream signaling.  相似文献   

8.
Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone leptin, stimulation of pro-opiomelanocortin neurons, and subsequent activation of central nervous system melanocortin 4 receptors.  相似文献   

9.
Components of astrocytic intercellular calcium signaling   总被引:5,自引:0,他引:5  
It has become evident that astrocytes play major roles in central nervous system (CNS) function. Because they are endowed with ion channels, transport pathways, and enzymatic intermediates optimized for ionic uptake, degradation of metabolic products, and inactivation of numerous substances, they are able to sense and correct for changes in neural microenvironment. Besides this housekeeping role, astrocytes modulate neuronal activity either by direct communication through gap junctions or through the release of neurotransmitters and/or nucleotides affecting nearby receptors. One prominent mode by which astrocytes regulate their own activity and influence neuronal behavior is via Ca2+ signals, which may be restricted within one cell or be transmitted throughout the interconnected syncytium through the propagation of intercellular calcium waves. This review aims to outline the most recent advances regarding the active communication of astrocytes that is encoded by intracellular calcium variation.  相似文献   

10.
Relationships between the brain and the immune system   总被引:1,自引:0,他引:1  
The concept that the brain can modulate activity the immune system stems from the theory of stress. Recent advances in the study of the inter-relationships between the central nervous system and the immune system have demonstrated a vast network of communication pathways between the two systems. Lymphoid organs are innervated by branches of the autonomic nervous system. Accessory immune cells and lymphocytes have membrane receptors for most neurotransmitters and neuropeptides. These receptors are functional, and their activation leads to changes in immune functions, including cell proliferation, chimiotactism and specific immune responses. Brain lesions and stressors can induce a number of changes in the functioning of the immune system. All these changes are not necessarily mediated by the neuroendocrine system. They can also be dependent on autonomic nerve function. The communication pathways that link the brain to the immune system are normally activated by signals from the immune system, and they serve to regulate immune responses. These signals originate from accessory immune cells such as monocytes and macrophages and they are represented mainly by proinflammatory cytokines. Proinflammatory cytokines produced at the periphery act on the brain via two major pathways: (1) a humoral pathway allowing pathogen specific molecular patterns to act on Toll-like receptors in those brain areas that are devoid of a functional blood-brain barrier, the so-called circumventricular areas; (2) a neural pathway, represented by the afferent nerves that innervate the bodily site of infection and injury. In both cases, peripherally produced cytokines induce the expression of brain cytokines that are produced by resident macrophages and microglial cells. These locally produced cytokines diffuse throughout the brain parenchyma to act on target brain areas so as to organise the central components of the host response to infection (fever, neuroendocrine activation, and sickness behavior).  相似文献   

11.
The role of glutamate receptors in synaptic transmission and excitotoxicity in the nervous system is well established. Recent evidence has emerged that glutamatergic mechanisms also exist in a wide variety of non-neuronal cells. In the case of thymocytes and lymphocytes, several types of glutamate receptor are expressed which can induce functional changes. This review focuses on the cellular function of NMDA-activated ionotropic and groups I and III metabotropic glutamate receptors in lymphocytes. Levels of exogenous and endogenous circulatory agonists and antagonists for lymphocyte glutamate receptors, notably homocysteine metabolites, are markedly increased in certain disease states and may be involved in disorders of the immune system. In addition to glutamate and aspartate, these compounds are active at glutamate receptors and increase the excitotoxic effects of glutamate in both neurons and lymphocytes. Increased levels of compounds acting at glutamate receptors may be risk factors for organ damage, for example in both heart and kidney disease. We conclude that glutamate is involved in signaling in immunocompetent cells and that the expression of both ionotropic and metabotropic glutamate receptors may have regulatory functions in immunocompetent cells, as well as in the nervous system. In addition, glutamate may serve as a signaling agent between the immune and nervous systems.  相似文献   

12.
人的精神活动高级而又复杂,至今仍是未解之谜。目前研究认为多巴胺作为脑内重要神经递质,参与调节人的精神活动和运动功能,尤其在睡眠的主动性神经调节过程,以及学习记忆等认知功能的神经环路中,多巴胺都发挥着不可替代的作用。本文将通过对多巴胺神经系统,睡眠,认知功能的概述,以及通过对多巴胺神经系统与睡眠-觉醒系统和认知功能的解剖学联系的简述,结合多巴胺神经元、多巴胺受体及多巴胺转运体等不同角度分别阐述其对睡眠-觉醒和认知功能的调控作用,以期揭开人类精神活动的产生机制的一层面纱,以及对多巴胺药物对神经退行性变疾病的治疗靶点提供一定的理论支持。  相似文献   

13.
Recent data point to important roles for proteinases and their cognate proteinase-activated receptors (PARs) in the ontogeny and pathophysiology of the nervous system. PARs are a family of G-protein-coupled receptors that can affect neural cell proliferation, morphology and physiology. PARs also have important roles in neuroinflammatory and degenerative diseases such as human immunodeficiency virus-associated dementia, Alzheimer's disease and pain. These receptors might also influence the pathogenesis of stroke and multiple sclerosis, conditions in which the blood-brain barrier is disrupted. The diversity of effects of PARs on neural function and their widespread distribution in the nervous system make them attractive therapeutic targets for neurological disorders. Here, we review the roles of PARs in the central and peripheral nervous systems during health and disease, with a focus on neuroinflammatory and degenerative disorders.  相似文献   

14.
Sphingosine-1-phosphate (S1P) receptors are widely expressed in the central nervous system where they are thought to regulate glia cell function. The phosphorylated version of fingolimod/FTY720 (FTY720P) is active on a broad spectrum of S1P receptors and the parent compound is currently in phase III clinical trials for the treatment of multiple sclerosis. Here, we aimed to identify which cell type(s) and S1P receptor(s) of the central nervous system are targeted by FTY720P. Using calcium imaging in mixed cultures from embryonic rat cortex we show that astrocytes are the major cell type responsive to FTY720P in this assay. In enriched astrocyte cultures, we detect expression of S1P1 and S1P3 receptors and demonstrate that FTY720P activates Gi protein-mediated signaling cascades. We also show that FTY720P as well as the S1P1-selective agonist SEW2871 stimulate astrocyte migration. The data indicate that FTY720P exerts its effects on astrocytes predominantly via the activation of S1P1 receptors, whereas S1P signals through both S1P1 and S1P3 receptors. We suggest that this distinct pharmacological profile of FTY720P, compared with S1P, could play a role in the therapeutic effects of FTY720 in multiple sclerosis.  相似文献   

15.
Glia: the fulcrum of brain diseases   总被引:4,自引:0,他引:4  
Neuroglia represented by astrocytes, oligodendrocytes and microglial cells provide for numerous vital functions. Glial cells shape the micro-architecture of the brain matter; they are involved in information transfer by virtue of numerous plasmalemmal receptors and channels; they receive synaptic inputs; they are able to release 'glio'transmitters and produce long-range information exchange; finally they act as pluripotent neural precursors and some of them can even act as stem cells, which provide for adult neurogenesis. Recent advances in gliology emphasised the role of glia in the progression and handling of the insults to the nervous system. The brain pathology, is, to a very great extent, a pathology of glia, which, when falling to function properly, determines the degree of neuronal death, the outcome and the scale of neurological deficit. Glial cells are central in providing for brain homeostasis. As a result glia appears as a brain warden, and as such it is intrinsically endowed with two opposite features: it protects the nervous tissue as long as it can, but it also can rapidly assume the guise of a natural killer, trying to eliminate and seal the damaged area, to save the whole at the expense of the part.  相似文献   

16.
17.
The opioid and chemokine receptors are both members of the seven transmembrane G protein-coupled receptor (GPCR) superfamily. Desensitization is believed to be a major element of the regulation of the function of these receptors, and recent findings suggest that both agonist-dependent (homologous) desensitization and heterologous desensitization can control receptor activity. The cross-desensitization between opioid and chemokine receptors has significant implications for our understanding of both the regulation of leukocyte trafficking, as well as the regulation of chemokine receptor function in inflammatory disease states. We also review findings which suggest that pro-inflammatory chemokine receptor-induced heterologous desensitization of opioid receptors has important implications for the regulation of opioid receptor function in the nervous system.  相似文献   

18.
The cloning of the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) cDNAs provides a basis for understanding the actions of glucocorticoids in the central nervous system. Structural evidence is presented for the identity of the type I corticosteroid binding site as the MR expressed in the brain. This identification is supported by the anatomical distribution of MR mRNA, determined by in situ hybridization histochemistry, which parallels the steroid autoradiographic localization of the type I sites. An in vitro assay for MR and GR function demonstrates that these receptors respond to different levels of glucocorticoid, suggesting that together they confer a larger dynamic range of sensitivity to this hormone. These studies lead to a new hypothesis for glucocorticoid action in the central nervous system.  相似文献   

19.
突触前代谢型谷氨酸受体调节神经递质的释放   总被引:6,自引:0,他引:6  
谷氨酸通过激活离子型受体(iGluR)介导快速兴奋性突触传递,参与脑内几乎所有生理过程。谷氨酸过量释放可导致与脑缺血,缺氧及变性疾病有关的兴奋毒作用,最终引起神经元的死亡。代谢型谷氨酸受体(mGluRs)是一个与G-蛋白偶联的受体家族,分三型共八个亚型。其中Ⅱ和Ⅲ型mGluRs主要位于突触前,发挥对谷氨酸释放的负反馈调节。Ⅲ型mGluRs中的mGluR7位于谷氨酸能末梢突触前膜的活性区,发挥自身受体的作用,对正常情况下突触传递过程的谷氨酸释放进行负反馈调节;而属于Ⅱ型的mGluR2及属于Ⅲ型的mGluR4和mGluR8,则位于远离突有膜活性区的外突触区,因而正常突触传递过程中释放的谷氨酸量不能激活它们。只有在突触传递增强的情况下才被激活,抑制递质的释放。国外,mGluRs还分布在GABA能纤维末梢,通过突触前机制抑制GABA的释放。对突触前膜受体尤其是位于外突触区的mGluRs受体的研究,将有可能开发出理想的工具药,从而预防和阻止谷氨酸过量释放引起的神经毒及神经元的死亡。  相似文献   

20.
Nicotinic acetylcholine receptors: from structure to brain function   总被引:14,自引:0,他引:14  
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels and can be divided into two groups: muscle receptors, which are found at the skeletal neuromuscular junction where they mediate neuromuscular transmission, and neuronal receptors, which are found throughout the peripheral and central nervous system where they are involved in fast synaptic transmission. nAChRs are pentameric structures that are made up of combinations of individual subunits. Twelve neuronal nAChR subunits have been described, α2–α10 and β2–β4; these are differentially expressed throughout the nervous system and combine to form nAChRs with a wide range of physiological and pharmacological profiles. The nAChR has been proposed as a model of an allosteric protein in which effects arising from the binding of a ligand to a site on the protein can lead to changes in another part of the molecule. A great deal is known about the structure of the pentameric receptor. The extracellular domain contains binding sites for numerous ligands, which alter receptor behavior through allosteric mechanisms. Functional studies have revealed that nAChRs contribute to the control of resting membrane potential, modulation of synaptic transmission and mediation of fast excitatory transmission. To date, ten genes have been identified in the human genome coding for the nAChRs. nAChRs have been demonstrated to be involved in cognitive processes such as learning and memory and control of movement in normal subjects. Recent data from knockout animals has extended the understanding of nAChR function. Dysfunction of nAChR has been linked to a number of human diseases such as schizophrenia, Alzheimer's and Parkinson's diseases. nAChRs also play a significant role in nicotine addiction, which is a major public health concern. A genetically transmissible epilepsy, ADNFLE, has been associated with specific mutations in the gene coding for the α4 or β2 subunits, which leads to altered receptor properties. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号