首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Z  Wu Y  Gao M  Zhang J  Kong Q  Liu Y  Ba H  Zhou J  Zhang Y 《Cell host & microbe》2012,11(3):253-263
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance.  相似文献   

2.
Although interactions of plants with virulent and avirulent host pathogens are under intensive study, relatively little is known about plant interactions with non-adapted pathogens and the molecular events underlying non-host resistance. Here we show that two Pseudomonas syringae strains for which Arabidopsis is a non-host plant, P. syringae pathovar (pv.) glycinea (Psg) and P. syringae pv. phaseolicola (Psp),induce salicylic acid (SA) accumulation and pathogenesis-related gene expression at inoculation sites, and that induction of these defences is largely dependent on bacterial type III secretion. The defence signalling components activated by non-adapted bacteria resemble those initiated by host pathogens, including SA, non-expressor of PR-1, non-race specific disease resistance 1, phytoalexin-deficient 4 and enhanced disease susceptibility 1. However, some differences in individual defence pathways induced by Psg and Psp exist, suggesting that for each strain, distinct sets of type III effectors are recognized by the plant. Although induction of SA-related defences occurs, it does not directly contribute to bacterial non-host resistance, because Arabidopsis mutants compromised in SA signalling and other classical defence pathways do not permit enhanced survival of Psg or Psp in leaves. The finding that numbers of non-adapted bacteria in leaf extracellular spaces rapidly decline after inoculation suggests that they fail to overcome toxic or structural defence barriers preceding SA-related responses. Consistent with this hypothesis, rapid, type III secretion system-independent upregulation of the lignin biosynthesis genes, PAL1 and BCB, which might contribute to an early induced, cell wall-based defence mechanism, occurs in response to non-adapted bacteria. Moreover, knockout of PAL1 permits increased leaf survival of non-host bacteria. In addition, different survival rates of non-adapted bacteria in leaves from Arabidopsis accessions and mutants with distinct glucosinolate composition or hydrolysis exist. Possible roles for early inducible, cell wall-based defences and the glucosinolate/myrosinase system in bacterial non-host resistance are discussed.  相似文献   

3.
Nonhost resistance to plant pathogens can be constitutive or induced by microbes. Successful pathogens suppress microbe-induced plant defences by delivering appropriate effectors, which are apparently not sufficiently effective on nonhost plant species, as can be concluded from the strong host specificity of many biotroph plant pathogens. Such effectors act on particular plant targets, such as promoters or motifs in expressed sequences. Despite much progress in the elucidation of the molecular aspects of nonhost resistance to plant pathogens, very little is known about the genes that determine whether effectors can or cannot suppress the basal defence. In hosts they can, in nonhosts they cannot. The targets determining the host status of plants can be identified in inheritance studies. Recent reports have indicated that nonhost resistance is inherited polygenically, and exhibits strong similarity and association with the basal resistance of plants to adapted pathogens.  相似文献   

4.
5.
Conserved microbial molecules known as PAMPs (pathogen-associated molecular patterns) elicit defence responses in plants through extracellular receptor proteins. One important PAMP is the flagellin protein derived from motile bacteria. We show here that the solanaceous species Nicotiana benthamiana perceives the flagellin proteins of both pathogenic and non-host species of Pseudomonas syringae. The response to flagellin required a gene closely related to that encoding the Arabidopsis thaliana flagellin receptor that we designated NbFls2. In addition, silencing of NbFls2 led to increased growth of compatible, non-host and non-pathogenic strains of P. syringae. Thus, flagellin perception restricts growth of P. syringae strains on N. benthamiana. Pathogenic bacteria secrete effector proteins into the plant cell to enhance virulence. We tested the ability of several unrelated effectors to suppress PAMP-mediated defences. The effector proteins AvrPto and AvrPtoB, but not AvrRps4, suppressed all responses tested including the hypersensitive response induced by non-host flagellins and the oomycete elicitor INF1. Strikingly, transient expression of avrPto or avrPtoB stimulated the growth of non-pathogenic Agrobacterium tumefaciensin planta, suggesting that multiplication of this species is also restricted by PAMP perception. Unexpectedly, AvrPtoB but not AvrPto required the defence-associated genes Rar1, Sgt1 and Eds1 for suppression. This observation separates the respective mechanisms of the two effectors, and suggests that AvrPtoB may target the defence machinery directly for its suppressive effect.  相似文献   

6.
To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the formation of a callosic encasement of the haustorial complex (EHC) and hypersensitive response (HR), which appears to be controlled by both salicylic acid (SA)-dependent and SA-independent defence pathways, as supported by the susceptibility of the pad4/sid2 double mutant to the pathogen. While the broad-spectrum resistance protein RPW8.2 enhances post-penetration resistance against G. cichoracearum UCSC1, a well-adapted powdery mildew pathogen, RPW8.2, is dispensable for post-penetration resistance against G. cichoracearum UMSG1, and its specific targeting to the extrahaustorial membrane is physically blocked by the EHC, resulting in HR cell death. Taken together, the present work suggests an evolutionary scenario for the Arabidopsis-powdery mildew interaction: EHC formation is a conserved subcellular defence evolved in plants against haustorial invasion; well-adapted powdery mildew has evolved the ability to suppress EHC formation for parasitic growth and reproduction; RPW8.2 has evolved to enhance EHC formation, thereby conferring haustorium-targeted, broad-spectrum resistance at the post-invasion stage.  相似文献   

7.
Plant cells have two defense systems that detect bacterial pathogens. One is a basal defense system that recognizes complex pathogen-associated molecular patterns (PAMPs). A second system uses disease-resistance (R) proteins to recognize type lll effector proteins that are delivered into the plant cell by the pathogen's type III secretion system. Here we show that these two pathways are linked. We find that two Pseudomonas syringae type III effectors, AvrRpt2 and AvrRpm1, inhibit PAMP-induced signaling and thus compromise the host's basal defense system. RIN4 is an Arabidopsis protein targeted by AvrRpt2 and AvrRpm1 for degradation and phosphorylation, respectively. We find that RIN4 is itself a regulator of PAMP signaling. The R proteins, RPS2 and RPM1, sense type III effector-induced perturbations of RIN4. Thus, R proteins guard the plant against type III effectors that inhibit PAMP signaling and provide a mechanistic link between the two plant defense systems.  相似文献   

8.
Plant pathogens deliver a variety of virulence factors to host cells to suppress basal defence responses and create suitable environments for their propagation. Plants have in turn evolved disease resistance genes whose products detect the virulence factors as a signal of invasion and activate effective defence responses. Understanding how a virulence effector contributes to virulence on susceptible hosts but becomes an avirulence factor that triggers defence responses on resistance hosts has been a major focus in plant research. Recent studies have shown that a growing list of pathogen-encoded effectors functions as proteases that are secreted into plant cells to modify host proteins. In addition, several plant proteases have been found to function in activation of the defence mechanism. These findings reveal that post-translational modification of host proteins through proteolytic processing is a widely used mechanism in regulating the plant defence response.  相似文献   

9.
Biotic stress has a major impact on the process of natural selection in plants. As plants have evolved under variable environmental conditions, they have acquired a diverse spectrum of defensive strategies against pathogens and herbivores. Genetic variation in the expression of plant defence offers valuable insights into the evolution of these strategies. The 'zigzag' model, which describes an ongoing arms race between inducible plant defences and their suppression by pathogens, is now a commonly accepted model of plant defence evolution. This review explores additional strategies by which plants have evolved to cope with biotic stress under different selective circumstances. Apart from interactions with plant-beneficial micro-organisms that can antagonize pathogens directly, plants have the ability to prime their immune system in response to selected environmental signals. This defence priming offers disease protection that is effective against a broad spectrum of virulent pathogens, as long as the augmented defence reaction is expressed before the invading pathogen has the opportunity to suppress host defences. Furthermore, priming has been shown to be a cost-efficient defence strategy under relatively hostile environmental conditions. Accordingly, it is possible that selected plant varieties have evolved a constitutively primed immune system to adapt to levels of disease pressure. Here, we examine this hypothesis further by evaluating the evidence for natural variation in the responsiveness of basal defence mechanisms, and discuss how this genetic variation can be exploited in breeding programmes to provide sustainable crop protection against pests and diseases.  相似文献   

10.
Oomycete pathogens of plants and animals are related to marine algae and have evolved mechanisms to avoid or suppress host defences independently of other groups of pathogens, such as bacteria and fungi. They cause many destructive diseases affecting crops, forests and aquaculture. The development of genomic resources has led to a dramatic increase in our knowledge of the effectors used by these pathogens to suppress host defences. In particular, a huge, rapidly diverging superfamily of effectors with 100–600 members per genome has been identified. Proteins in this family use the N-terminal motifs RxLR and dEER to cross the host plasma cell membrane autonomously. Once inside the host cell, the proteins suppress host defence signalling. The importance of this effector family is underlined by the fact that plants have evolved intracellular defence receptors to detect the effectors and trigger a rapid counter-attack. The mechanisms by which the effector enter host cells, and by which they suppress host defences, remain to be elucidated.  相似文献   

11.
The Genetic and Molecular Basis of Plant Resistance to Pathogens   总被引:1,自引:0,他引:1  
Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host,and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks.Genetically, plant resistance to pathogens can be divided into qualitative and quantitative disease resistance,conditioned by major gene(s) and multiple genes with minor effects,respectively.Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens,whereas quantitative disease resistance is involved in defense response to all plant pathogens,from biotrophs,hemibiotrophs to necrotrophs.Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response.In recent years,great progress has been made related to the molecular basis underlying host-pathogen interactions.In this review,we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.  相似文献   

12.
Non-host disease resistance involves the production of hypersensitive response (HR), a programmed cell death (PCD) that occurs at the site of pathogen infection. Plant mitochondrial reactive oxygen species (ROS) production and red-ox changes play a major role in regulating such cell death. Proline catabolism reactions, especially pyrroline-5-carboxylate (P5C) accumulation, are known to produce ROS and contribute to cell death. Here we studied important genes related to proline synthesis and catabolism in the defence against host and non-host strains of Pseudomonas syringae in Nicotiana benthamiana and Arabidopsis. Our results show that ornithine delta-aminotransferase (δOAT) and proline dehydrogenases (ProDH1 and ProDH2) are involved in the defence against non-host pathogens. Silencing of these genes in N. benthamiana delayed occurrence of HR and favoured non-host pathogen growth. Arabidopsis mutants for these genes compromised non-host resistance and showed a decrease in non-host pathogen-induced ROS. Some of the genes involved in proline metabolism were also induced by a pathogen-carrying avirulence gene, indicating that proline metabolism is influenced during effector-triggered immunity (ETI). Our results demonstrate that δOAT and ProDH enzyme-mediated steps produce ROS in mitochondria and regulate non-host HR, thus contributing to non-host resistance in plants.  相似文献   

13.
The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism’s life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant–pathogen interactions and integrated defense responses in rice.  相似文献   

14.
Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation.  相似文献   

15.
The soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive pathogens of soybeans. SCN is an obligate and sedentary parasite that transforms host plant root cells into an elaborate permanent feeding site, a syncytium. Formation and maintenance of a viable syncytium is an absolute requirement for nematode growth and reproduction. In turn, sensing pathogen attack, plants activate defence responses and may trigger programmed cell death at the sites of infection. For successful parasitism, H. glycines must suppress these host defence responses to establish and maintain viable syncytia. Similar to other pathogens, H. glycines engages in these molecular interactions with its host via effector proteins. The goal of this study was to conduct a comprehensive screen to identify H. glycines effectors that interfere with plant immune responses. We used Nicotiana benthamiana plants infected by Pseudomonas syringae and Pseudomonas fluorescens strains. Using these pathosystems, we screened 51 H. glycines effectors to identify candidates that could inhibit effector-triggered immunity (ETI) and/or pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We identified three effectors as ETI suppressors and seven effectors as PTI suppressors. We also assessed expression modulation of plant immune marker genes as a function of these suppressors.  相似文献   

16.
In plants, nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins can form receptor networks to confer hypersensitive cell death and innate immunity. One class of NLRs, known as NLR required for cell death (NRCs), are central nodes in a complex network that protects against multiple pathogens and comprises up to half of the NLRome of solanaceous plants. Given the prevalence of this NLR network, we hypothesised that pathogens convergently evolved to secrete effectors that target NRC activities. To test this, we screened a library of 165 bacterial, oomycete, nematode, and aphid effectors for their capacity to suppress the cell death response triggered by the NRC-dependent disease resistance proteins Prf and Rpi-blb2. Among 5 of the identified suppressors, 1 cyst nematode protein and 1 oomycete protein suppress the activity of autoimmune mutants of NRC2 and NRC3, but not NRC4, indicating that they specifically counteract a subset of NRC proteins independently of their sensor NLR partners. Whereas the cyst nematode effector SPRYSEC15 binds the nucleotide-binding domain of NRC2 and NRC3, the oomycete effector AVRcap1b suppresses the response of these NRCs via the membrane trafficking-associated protein NbTOL9a (Target of Myb 1-like protein 9a). We conclude that plant pathogens have evolved to counteract central nodes of the NRC immune receptor network through different mechanisms. Coevolution with pathogen effectors may have driven NRC diversification into functionally redundant nodes in a massively expanded NLR network.

Plant pathogens have evolved to counteract their hosts’ immune systems. A screen for pathogen effectors that suppress sensor NLR-mediated cell death in tobacco identifies effectors from a cyst nematode and an oomycete that suppress the NRC branch of the immune network to inhibit the immune-related cell death response.  相似文献   

17.
Arabidopsis is a non-host for Pseudomonas syringae pv. phaseolicola NPS3121 (Pph), a bacterial pathogen of bean. Pph does not induce a hypersensitive response in Arabidopsis. Here we show that Arabidopsis instead resists Pph with multi-layered basal defense. Our approach was: (i) to identify defense readouts induced by Pph; (ii) to determine whether mutations in known Arabidopsis defense genes disrupt Pph-induced defense signaling; (iii) to determine whether heterologous type III effectors from pathogens of Arabidopsis suppress Pph-induced defense signaling, and (iv) to ascertain how basal defenses contribute to resistance against Pph by individually or multiply disrupting defense signaling pathways with mutations and heterologous type III effectors. We demonstrate that Pph elicits a minimum of three basal defense-signaling pathways in Arabidopsis. These pathways have unique readouts, including PR-1 protein accumulation and morphologically distinct types of callose deposition. Further, they require distinct defense genes, including PMR4, RAR1, SID2, NPR1, and PAD4 . Finally, they are suppressed differentially by heterologous type III effectors, including AvrRpm1 and HopM1. Pph growth is enhanced only when multiple defense pathways are disrupted. For example, mutation of NPR1 or SID2 combined with the action of AvrRpm1 and HopM1 renders Arabidopsis highly susceptible to Pph. Thus, non-host resistance of Arabidopsis to Pph is based on multiple, individually effective layers of basal defense.  相似文献   

18.
Immunity of an entire plant species against all genetic variants of a particular parasite is referred to as non-host resistance. Although non-host resistance represents the most common and durable form of plant resistance in nature, it has thus far been poorly understood at the molecular level. Recently, novel model systems have established the first mechanistic insights. The genetic dissection of Arabidopsis non-host resistance to non-adapted biotrophic powdery mildew fungi provided evidence for functionally redundant but operationally distinct pre- and post-invasion immune responses. Conceptually, these complex and successive defence mechanisms explain the durable and robust nature of non-host resistance. Pathogen lifestyle and infection biology, ecological parameters and the evolutionary relationship of the interaction partners determine differences and commonalities in other model systems.  相似文献   

19.
The AvrE superfamily of type III effectors (T3Es) is widespread among type III‐dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE‐T3Es contribute significantly to virulence by suppressing pathogen‐associated molecular pattern (PAMP)‐triggered immunity. They inhibit salicylic acid‐mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE‐T3Es elicit cell death in both host and non‐host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family.  相似文献   

20.
The perception of pathogen‐associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP‐triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号