首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

The conformation of adducts derived from the reactions and covalent binding of the (+) and (-) enantiomers of 7β, 8α-dihydroxy-9α, 10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (anti-BaPDE) with double-stranded calf thymus DNA in vitro were investigated utilizing the electric linear dichroism technique. The linear dichroism and absorption spectra of the covalent DNA complexes are interpreted in terms of a superposition of two types of binding sites. One of these conformations (site I) is a complex in which the plane of the pyrene residue is close to parallel (within 30°) to the planes of the DNA bases (quasi-intercalation), while the other (site II) is an external binding site; this latter type of adduct is attributed to the covalent binding of anti-BaPDE to the exocyclic amino group of deoxyguanine (N2-dG), while site I adducts are attributed to the 06-deoxyguanine and N6-deoxyadenine adducts identified in the product analysis of P. Brookes and M.R. Osborne (Carcinogenesis (1982) 3, 1223–1226). Site II adducts are dominant (~90% in the covalent complexes derived from the (+) enantiomer), but account for only 50±5% of the adducts in the case of the (—)-enantiomer. The orientation of site II complexes is different by 20±10° in the adducts derived from the binding of the (+) and the (—) enantiomers to DNA, the long axis of the pyrene chromophore being oriented more parallel to the axis of the DNA helix in the case of the (+) enantiomer. These findings support the proposals by Brookes and Osborne that the difference in spatial orientation of the N2-dG adducts of (-)-anti-BaPDE together with their lower abundance may account for the lower biological activity of the (—) enantiomer. The external site II adducts, rather than site I adducts, appear to be correlated with the biological activity of these comoounds.  相似文献   

2.
The conformations of the adducts derived from the covalent binding of the two enantiomeric forms of 9,10-epoxy-9,10,11,12-tetrahydrobenzo(e)pyrene (BePE) with native DNA were investigated by the electric linear dichroism technique. Both enantiomers give rise to two major adducts, one of which appears to be a quasi-intercalative site (I) while the other one is an external binding site (II). While the overall linear dichroism spectra are similar, in the case of the (-) enantiomer there is a greater contribution of site II adducts. These results are markedly different from the ones obtained with the two enantiomers of anti-benzo(a)pyrene-7,8-diol-9,10-epoxide (BaPDE), where the (+) enantiomer gives rise almost exclusively to site II binding, while the (-) enantiomer gives rise to both site I and site II covalent binding. The differences in the heterogeneity of binding between BePE and anti-BaPDE enantiomers may be due to the absence of hydroxyl groups in BePE which, in the case of BaPDE, are an important factor in determining the stereoselective properties of the covalent binding to double-stranded DNA.  相似文献   

3.
Abstract

The conformations of the adducts derived from the covalent binding of the two enantiomeric forms of 9,10-epoxy-9,10,11,12-tetrahydrobenzo(e)pyrene (BePE) with native DNA were investigated by the electric linear dichroism technique. Both enantiomers give rise to two major adducts, one of which appears to be a quasi-intercalative site (I) while the other one is an external binding site (II). While the overall linear dichroism spectra are similar, in the case of the (—) enantiomer there is a greater contribution of site II adducts. These results are markedly different from the ones obtained with the two enantiomers of anti-benzo(a)pyrene-7,8-diol-9,10-epoxide (BaPDE), where the (+) enantiomer gives rise almost exclusively to site II binding, while the (—) enantiomer gives rise to both site I and site II covalent binding. The differences in the heterogeneity of binding between BePE and anti-BaPDE enantiomers may be due to the absence of hydroxyl groups in BePE which, in the case of BaPDE, are an important factor in determining the stereoselective properties of the covalent binding to double-stranded DNA.  相似文献   

4.
The covalent binding of the tumorigenic (+) enantiomer and the nontumorigenic (-) enantiomer of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,19-tetrahydrobenzo(a)pyrene (BPDE) to double-stranded native DNA gives rise to heterogeneous adducts, especially in the case of (-)-BPDE. The covalent (+)-BPDE-DNA adducts are predominantly of the external site II type, while the (-)-BPDE-DNA adducts are predominantly of the quasi-intercalative, site I type (65%), with 35% of site II adducts. The site I adducts can be selectively photodissociated with near-ultraviolet light (quantum yields in the range 0.0003-0.005); the external site II adducts (photodissociation quantum yield 3 X 10(-5) are 10-100-times more stable. The photolability of covalent (-)-BPDE-DNA adducts accounts for the discrepancies in the linear dichroism properties of these complexes reported previously. Fluorescence quenching data, previously utilized to assess the degree of solvent exposure of the pyrenyl residues in covalent adducts, were in some cases significantly influenced by the presence of highly fluorescent tetraol dissociation products. After correcting for this effect, it is shown that the fluorescence of the external site II (+)-BPDE-DNA adducts is sensitive to acrylamide, while the fluorescence of the dominant site I (-)-BPDE-DNA adducts is not affected by this fluorescence quencher, as expected for adducts with considerable carcinogen-base stacking interactions.  相似文献   

5.
Kinetic flow dichroism studies indicate that the (+) enantiomer of 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene physically bound at intercalative-type sites in double-stranded DNA undergoes covalent binding reactions to form adducts at external binding sites. The conformation of the non-covalent complex derived from the (-) stereoisomer is also intercalative in nature, but the conformations of the covalent adducts are heterogeneous and are characterized by both intercalative-type and external conformations. It is suggested that the distinctly higher biological activity of the (+) enantiomer relative to the activity of the (-) enantiomer may be related to the preponderance of 7,8,9-triol benzo(a)pyrene residues covalently linked to deoxyguanine and located at external binding sites in the DNA adducts.  相似文献   

6.
R Xu  B Mao  J Xu  B Li  S Birke  C E Swenberg    N E Geacintov 《Nucleic acids research》1995,23(12):2314-2319
The apparent persistence length of enzymatically linearized pIBI30 plasmid DNA molecules approximately 2300 bp long, as measured by a hydrodynamic linear flow dichroism method, is markedly decreased after covalent binding of the highly tumorigenic benzo[a]pyrene metabolite 7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-BPDE]. In striking contrast, the binding of the non-tumorigenic, mirror-image 7S,8R,9R,10S enantiomer [(-)-anti-BPDE] to DNA has no measurable effect on its alignment in hydrodynamic flow gradients (< or = 2.2% of the DNA bases modified). In order to relate this effect to BPDE-nucleotide lesions of defined stereochemistry, the bending induced by site-specifically placed and stereochemically defined (+)- and (-)-anti-BPDE-N2-dG lesions in an 11mer deoxyoligonucleotide duplex was studied by ligation and gel electrophoresis methods. Out of the four stereochemically isomeric anti-BPDE-N2-deoxyguanosyl (dG) adducts with either (+)-trans, (-)-trans, (+)-cis, and (-)-cis adduct stereochemistry, only the (+)-trans adduct gives rise to prominent bends or flexible hinge joints in the modified oligonucleotide duplexes. Since both anti-BPDE enantiomers are known to bind preferentially to dG (> or = 85%), these observations can account for the differences in persistence lengths of DNA modified with either (+)-anti-BPDE or the chiral (-)-anti-BPDE isomer.  相似文献   

7.
Linear dichroism and absorption methods are used to study the orientations of transition moments of absorption bands of polycyclic aromatic epoxide derivatives which overlap with those of the DNA band in the 240-300 nm region. Both the short and long axes of the pyrene residues of 1-oxiranylpyrene (1-OP) and the (+) and (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) noncovalently bound to double-stranded native DNA are oriented approximately perpendicular to the axis of the DNA helix, consistent with intercalative modes of binding. The covalent binding of these three epoxide derivatives to DNA is accompanied by reorientations of both the short and long axes of the pyrene residues. Covalent adducts derived from the highly mutagenic (+)-anti-BPDE are characterized by tilts of the short axis within 35 degrees or less, and of the long axis by more than 60-80 degrees, with respect to the planes of the DNA bases. In the adducts derived from the binding of the less mutagenic (-)-anti-BPDE and 1-OP epoxide derivatives to DNA, the long axes of the pyrenyl rings are predominantly oriented within 25 degrees of the planes of the DNA bases; however, in the case of the (-) enantiomer of BPDE, there is significant heterogeneity of conformations. In the case of the 1-OP covalent DNA adducts, the short axis of the pyrene ring system is tilted away from the planes of the DNA bases, and the pyrene ring system is not intercalated between DNA base-pairs as in the noncovalent complexes. The stereochemical properties of the saturated 7,8,9,10-ring in BPDE, or the lack of the 7 and 8 carbon atoms in 1-OP, do not seem to affect noncovalent intercalative complex formation which, most likely, is influenced mainly by the flat pyrenyl residues. These structural features, however, strongly influence the conformations of the covalent adducts, which in turn may be responsible for the differences in the mutagenic activities of these molecules.  相似文献   

8.
The UvrABC nuclease system from Escherichia coli removes DNA damages induced by a wide range of chemical carcinogens with variable efficiencies. The interactions with UvrABC proteins of the following three lesions site-specifically positioned in DNA, and of known conformations, were investigated: (i) adducts derived from the binding of the (-)-(7S,8R,9R,10S) enantiomer of 7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-anti-BPDE] by cis-covalent addition to N(2)-2'-deoxyguanosine [(-)-cis-anti-BP-N(2)-dG], (ii) an adduct derived from the binding of the (+)-(1R,2S,3S,4R) enantiomer of 1,2-dihydroxy-3,4-epoxy-1,2,3, 4-tetrahydro-5-methylchrysene [(+)-anti-5-MeCDE] by trans addition to N(2)-2'-deoxyguanosine [(+)-trans-anti-MC-N(2)-dG], and (iii) a C8-2'-deoxyguanosine adduct (C8-AP-dG) formed by reductively activated 1-nitropyrene (1-NP). The influence of these three different adducts on UvrA binding affinities, formation of UvrB-DNA complexes by quantitative gel mobility shift analyses, and the rates of UvrABC incision were investigated. The binding affinities of UvrA varied among the three adducts. UvrA bound to the DNA adduct (+)-trans-anti-MC-N(2)-dG with the highest affinity (K(d) = 17 +/- 2 nM) and to the DNA containing C8-AP-dG with the least affinity (K(d) = 28 +/- 1 nM). The extent of complex formation with UvrB was also the lowest with the C8-AP-dG adduct. 5' Incisions occurred at the eighth phosphate from the modified guanine. The major 3' incision site corresponded to the fifth phosphodiester bond for all three adducts. However, additional 3' incisions were observed at the fourth and sixth phosphates in the case of the C8-AP-dG adduct, whereas in the case of the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG lesions additional 3' cleavage occurred at the sixth and seventh phosphodiester bonds. Both the initial rate and the extent of 5' and 3' incisions revealed that C8-AP-dG was repaired less efficiently in comparison to the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG containing DNA adducts. Our study showed that UvrA recognizes conformational changes induced by structurally different lesions and that in certain cases the binding affinities of UvrA and UvrB can be correlated with the incision rates. The size of the bubble formed around the damaged site with mismatched bases also appears to influence the incision rates. A particularly noteworthy finding in this study is that UvrABC repair of a substrate with no base opposite C8-AP-dG was quite inefficient as compared to the same adduct with a C opposite it. These findings are discussed in terms of the available NMR solution structures.  相似文献   

9.
The unwinding of supercoiled phi X174 RFI DNA induced by the tumorigenic (+) and non-tumorigenic (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) has been investigated by agarose slab-gel and ethidium titration tube gel electrophoresis. The differences in adduct conformations were verified by flow linear dichroism techniques. Both enantiomers cause a reversible unwinding by the formation of noncovalent intercalative complexes. The effects of covalently bound BPDE residues on the electrophoretic mobilities of the RF I DNA form in agarose gels were investigated in detail in the range of binding ratios rb approximately 0.0-0.06 (covalently bound BPDE residues/nucleotide). In this range of rb values, there is a striking difference in the mobilities of (+)-BPDE- and (-)-BPDE-adducted phi X174 DNA in agarose slab-gels, the covalently bound (+)-BPDE residues causing a significantly greater retardation than (-)-BPDE residues. Increasing the level of covalent adducts beyond rb approximately 0.06 in the case of the (+)-BPDE enantiomer, leads to further unwinding and a minimum in the mobilities (corresponding to comigration of the nicked form and the covalently closed relaxed modified form) at rb 0.10 +/- 0.01; at still higher rb values, rewinding of the modified DNA in the opposite sense is observed. From the minimum in the mobility, a mean unwinding angle (per BPDE residue) of theta = 12 +/- 1.5 degrees is determined, which is in good agreement the value of theta = 11 +/- 1.8 degrees obtained by the tube gel titration method. Using this latter method, values of theta = 6.8 +/- 1.7 degrees for (-)-BPDE-phi X174 adducts are observed. It is concluded that agarose slab gel techniques are not suitable for determining unwinding angles for (-)-BPDE-modified phi X174 DNA because the alterations in the tertiary structures for rb < 0.06 are too small to cause sufficiently large changes in the electrophoretic mobilities. The major trans (+)-BPDE-N2-guanosine covalent adduct is situated at external binding sites and the mechanisms of unwinding are therefore different from those relevant to noncovalent intercalative BPDE-DNA complexes or to classical intercalating drug molecules; a flexible hinge joint and a widening of the minor groove at the site of the lesion may account for the observed unwinding effects. The more heterogeneous (-)-BPDE-nucleoside adducts (involving cis and trans N2-guanosine, and adenosine adducts) are less effective in causing unwinding of supercoiled DNA for reasons which remain to be elucidated.  相似文献   

10.
DNA covalent binding studies with enantiomers of trans-7,8-dihydroxy- anti-9,10-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (anti-BPDE) have been carried out by means of spectroscopic techniques (UV, CD, and fluorescence). Synthetic polynucleotides are employed to investigate binding differences between the G.C and A.T base pairs and to elucidate the bases for the stereoselective covalent binding of DNA toward anti-BPDE. The results indicate that of all the polynucleotides studied, only poly(dA-dT).poly(dA-dT) exhibits predominant intercalative covalent binding towards (+)-anti-BPDE and suffers the least covalent modification. Only minor intercalative covalent contributions are found in alternating polymer poly(dA-dC).poly(dG-dT). These observations parallel the DNA physical binding results of anti-BPDE and its hydrolysis products. They support the hypothesis that intercalative covalent adducts derive from intercalative physical binding while the external covalent adducts derive from external bimolecular associations. In contrast to the A.T polymers, the guanine containing polymers exhibit pronounced reduction in covalent modification by (-)-anti-BPDE. The intercalative covalent binding mode becomes relatively more important in the adducts formed by the (-) enantiomer as a consequence of decreased external guanine binding. These findings are consistent with the guanine specificity, stereoselective covalent binding at dG, the absence of stereoselectivity at dA for anti-BPDE, and the enhanced binding heterogeneity for the (-) enantiomer as found in the native DNA studies. The possible sequence and/or conformational dependence of such stereoselective covalent binding is indicated by the opposite pyrenyl CD sign exhibited by (+)-anti-BPDE bound to polynucleotides with pyrimidine on one strand and purine on another vs. that bound to polymers containing alternating purine-pyrimidine sequences.  相似文献   

11.
12.
Abstract

DNA covalent binding studies with enantiomers of trans-7,8-dihydroxy- anti-9,10-epoxy- 7,8,9,10-tetrahydro-benzo [a] pyrene (anti-BPDE) have been carried out by means of spectroscopic techniques (UV, CD, and fluorescence). Synthetic polynucleotides are employed to investigate binding differences between the G · C and A · T base pairs and to elucidate the bases for the stereoselective covalent binding of DNA toward anti-BPDE. The results indicate that of all the polynucleotides studied, only poly(dA-dT) · poly(dA-dT) exhibits predominant intercalative covalent binding towards (+)-anti-BPDE and suffers the least covalent modification. Only minor intercalative covalent contributions are found in alternating polymer poly(dA-dC) · poly(dG-dT). These observations parallel the DNA physical binding results of anti-BPDE and its hydrolysis products. They support the hypothesis that intercalative covalent adducts derive from intercalative physical binding while the external covalent adducts derive from external bimolecular associations. In contrast to the A · T polymers, the guanine containing polymers exhibit pronounced reduction in covalent modification by (-)-anti-BPDE. The intercalative covalent binding mode becomes relatively more important in the adducts formed by the (-) enantiomer as a consequence of decreased external guanine binding. These findings are consistent with the guanine specificity, stereoselective covalent binding at dG, the absence of stereoselectivity at dA for anti-BPDE, and the enhanced binding heterogeneity for the (-) enantiomer as found in the native DNA studies. The possible sequence and/or conformational dependence of such stereoselective covalent binding is indicated by the opposite pyrenyl CD sign exhibited by (+)-anti-BPDE bound to polynucleotides with pyrimidine on one strand and purine on another vs. that bound to polymers containing alternating purine-pyrimidine sequences.  相似文献   

13.
The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M-1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6 +/- 1%) of DE-I than of DE-II (2-3%) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52 degrees with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) associated with potent carcinogenic activity. Mutagenesis induced by benzo[a]pyrene DNA adducts is believed to involve error-prone translesion synthesis opposite the lesion. However, the DNA polymerase involved in this process has not been clearly defined in eukaryotes. Here, we provide biochemical evidence suggesting a role for DNA polymerase eta (Poleta) in mutagenesis induced by benzo[a]pyrene DNA adducts in cells. Purified human Poleta predominantly inserted an A opposite a template (+)- and (-)-trans-anti-BPDE-N2-dG, two important DNA adducts of benzo[a]pyrene. Both lesions also dramatically elevated G and T mis-insertion error rates of human Poleta. Error-prone nucleotide insertion by human Poleta was more efficient opposite the (+)-trans-anti-BPDE-N2-dG adduct than opposite the (-)-trans-anti-BPDE-N2-dG. However, translesion synthesis by human Poleta largely stopped opposite the lesion and at one nucleotide downstream of the lesion (+1 extension). The limited extension synthesis of human Poleta from opposite the lesion was strongly affected by the stereochemistry of the trans-anti-BPDE-N2-dG adducts, the nucleotide opposite the lesion, and the sequence context 5' to the lesion. By combining the nucleotide insertion activity of human Poleta and the extension synthesis activity of human Polkappa, effective error-prone lesion bypass was achieved in vitro in response to the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts.  相似文献   

15.
The biologically most significant genotoxic metabolite of the environmental pollutant benzo[a]pyrene (B[a]P), (+)-7R,8S-diol 9S,10R-epoxide, reacts chemically with guanine in DNA, resulting in the predominant formation of (+)-trans-B[a]P-N(2)-dG and, to a lesser extent, (+)-cis-B[a]P-N(2)-dG adducts. Here, we compare the effects of the adduct stereochemistry and conformation on the methylation of cytosine catalyzed by two purified prokaryotic DNA methyltransferases (MTases), SssI and HhaI, with the lesions positioned within or adjacent to their CG and GCGC recognition sites, respectively. The fluorescence properties of the pyrenyl residues of the (+)-cis-B[a]P-N(2)-dG and (+)-trans-B[a]P-N(2)-dG adducts in complexes with MTases are enhanced, but to different extents, indicating that aromatic B[a]P residues are positioned in different microenvironments in the DNA-protein complexes. We have previously shown that the (+)-trans-isomeric adduct inhibits both the binding and methylating efficiencies (k(cat)) of both MTases [Subach OM, Baskunov VB, Darii MV, Maltseva DV, Alexandrov DA, Kirsanova OV, Kolbanovskiy A, Kolbanovskiy M, Johnson F, Bonala R, et al. (2006) Biochemistry45, 6142-6159]. Here we show that the stereoisomeric (+)-cis-B[a]P-N(2)-dG lesion has only a minimal effect on the binding of these MTases and on k(cat). The minor-groove (+)-trans adduct interferes with the formation of the normal DNA minor-groove contacts with the catalytic loop of the MTases. However, the intercalated base-displaced (+)-cis adduct does not interfere with the minor-groove DNA-catalytic loop contacts, allowing near-normal binding of the MTases and undiminished k(cat) values.  相似文献   

16.
The modes of reaction of the tumorigenic bay region diol epoxide anti-BADE [+/-)-trans-3,4-diol-anti-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthr acene) and the less potent tumor initiating diastereomer syn-BADE [+/-)-trans-3,4-diol-syn-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthra cene) with native, double-stranded DNA were compared. The bay-region diol epoxide derived from 3-methylcholanthrene (3-MCDE, racemic trans-9,10-diol-anti-7,8-epoxy-7,8,9,10-tetrahydromethylcholanthrene+ ++) was included in this study in order to assess the effects of the methyl and methylene substituents on the reactivity with DNA. Utilizing linear dichroism and other spectroscopic methods, it is shown that all three diol epoxides forn non-covalent complexes with DNA. The diastereomers anti-BADE and syn-BADE form intercalative physical complexes, but the association constant K of the syn-diastereomer is about 6-7 times smaller than for anti-BADE; this effect is ascribed to the bulky quasi-diaxial conformation of the diol epoxide ring in the syn diastereomer. The value of K (4000 M-1) is similar for anti-BADE and 3-MCDE, although the latter is not intercalated in the classical sense since the short axis of the molecule is tilted closer to the axis of the DNA double helix. The conformations of the covalent DNA adducts are interpreted in terms of a quasi-intercalative conformation (site I), and a conformation in which the long axes of the polycyclic molecules are tilted closer to the axis of the helix (site II). Both tumorigens, anti-BADE and 3-MCDE, undergo a marked re-orientation from a non-covalent site I to a covalent site II conformation upon binding chemically with the DNA bases, although a small fraction of the covalent anti-BADE adducts remains quasi-intercalated; in contrast, the alkyl substituents in 3-MCDE not only prevent the formation of intercalative physical complexes, but also the formation of site I covalent adducts. In the case of the less tumorigenic syn-BADE, both the non-covalent complexes and the covalent adducts are of the site I-type. The bay-region diol epoxide of benz[a]anthracene and of 3-methylcholanthrene display a similar pattern of reactivities and covalent adduct conformations as the bay region diol epoxide derivatives of benz[a]pyrene, suggesting that adduct conformation might be an important factor in determining the levels of mutagenic and tumorigenic activities of this class of compounds.  相似文献   

17.
Human cells possess multiple specialized DNA polymerases (Pols) that bypass a variety of DNA lesions which otherwise would block chromosome replication. Human polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. To better understand the relationship between the structural features in the active site and lesion bypass by Pol κ, we mutated codons corresponding to amino acids appearing close to the adducts in the active site, and compared bypass efficiencies. Remarkably, the substitution of alanine for phenylalanine 171 (F171), an amino acid conserved between Pol κ and its bacterial counterpart Escherichia coli DinB, enhanced the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG 18-fold. This substitution affected neither the fidelity of TLS nor the efficiency of dCMP incorporation opposite normal guanine. This amino acid change also enhanced the binding affinity of Pol κ to template/primer DNA containing (-)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 functions as a molecular brake for TLS across BPDE-N(2)-dG by Pol κ and that the F171A derivative of Pol κ bypasses these DNA lesions more actively than does the wild-type enzyme.  相似文献   

18.
Zhang Y  Wu X  Guo D  Rechkoblit O  Wang Z 《DNA Repair》2002,1(7):559-569
In cells, the major benzo[a]pyrene DNA adduct is the highly mutagenic (+)-trans-anti-BPDE-N(2)-dG. In eukaryotes, little is known about lesion bypass of this DNA adduct during replication. Here, we show that purified human Polkappa can effectively bypass a template (+)-trans-anti-BPDE-N(2)-dG adduct in an error-free manner. Kinetic parameters indicate that Polkappa bypass of the (-)-trans-anti-BPDE-N(2)-dG adduct was approximately 41-fold more efficient compared to the (+)-trans-anti-BPDE-N(2)-dG adduct. Furthermore, we have found another activity of human Polkappa in response to the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts: extension synthesis from mispaired primer 3' ends opposite the lesion. In contrast, the two adducts strongly blocked DNA synthesis by the purified human Polbeta and the purified catalytic subunits of yeast Polalpha, Poldelta, and Pol epsilon right before the lesion. Extension by human Polkappa from the primer 3' G opposite the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts was mediated by a -1 deletion mechanism, probably resulting from re-aligning the primer G to pair with the next template C by Polkappa prior to DNA synthesis. Thus, sequence contexts 5' to the lesion strongly affect the fidelity and mechanism of the Polkappa-catalyzed extension synthesis. These results support a dual-function model of human Polkappa in bypass of BPDE DNA adducts: it may function both as an error-free bypass polymerase alone and an extension synthesis polymerase in combination with another polymerase.  相似文献   

19.
Benzo[a]pyrene (B[a]P) is a well-characterized environmental polycyclic aromatic hydrocarbon pollutant. In living organisms, B[a]P is metabolized to the genotoxic anti-benzo[a]pyrene diol epoxide that reacts with cellular DNA to form stereoisomeric anti-B[a]PDE-N(2)-dG adducts. In this study, we explored the effects of adduct stereochemistry and position in double-stranded DNA substrates on the functional characteristics of the catalytic domain of murine de novo DNA methyltransferase Dnmt3a (Dnmt3a-CD). A number of 18-mer duplexes containing site-specifically incorporated (+)- and (-)-trans-anti-B[a]PDE-N(2)-dG lesions located 3'- and 5'-adjacent to and opposite the target cytosine residue were prepared. Dnmt3a-CD binds cooperatively to the DNA duplexes with an up to 5-fold greater affinity compared to that for the undamaged DNA duplexes. Methylation assays showed a 1.7-6.3-fold decrease in the methylation reaction rates for the damaged duplexes. B[a]PDE modifications stimulated a nonproductive binding and markedly favored substrate inhibition of Dnmt3a-CD in a manner independent of DNA methylation status. The latter effect was sensitive to the position and stereochemistry of the B[a]PDE-N(2)-dG adducts. The overall effect of trans-anti-B[a]PDE-N(2)-dG adducts on Dnmt3a-CD was less detrimental than in the case of the prokaryotic methyltransferases we previously investigated.  相似文献   

20.
Human nucleotide excision repair processes carcinogen-DNA adducts at highly variable rates, even at adjacent sites along individual genes. Here, we identify conformational determinants of fast or slow repair by testing excision of N2-guanine adducts formed by benzo[a]pyrene diol epoxide (BPDE), a potent and ubiquitous mutagen that induces mainly G x C-->T x A transversions and frameshift deletions. We found that human nucleotide excision repair processes the predominant (+)-trans-BPDE-N2-dG adduct 15 times less efficiently than a standard acetylaminofluorene-C8-dG lesion in the same sequence. No difference was observed between (+)-trans- and (-)-trans-BPDE-N2-dG, but excision was enhanced about 10-fold by changing the adduct configurations to either (+)-cis- or (-)-cis-BPDE-N2-dG. Conversely, excision of (+)-cis- and (-)-cis- but not (+)-trans-BPDE-N2-dG was reduced about 10-fold when the complementary cytosine was replaced by adenine, and excision of these BPDE lesions was essentially abolished when the complementary deoxyribonucleotide was missing. Thus, a set of chemically identical BPDE adducts yielded a greater-than-100-fold range of repair rates, demonstrating that nucleotide excision repair activity is entirely dictated by local DNA conformation. In particular, this unique comparison between structurally highly defined substrates shows that fast excision of BPDE-N2-dG lesions is correlated with displacement of both the modified guanine and its partner base in the complementary strand from their normal intrahelical positions. The very slow excision of carcinogen-DNA adducts located opposite deletion sites reveals a cellular strategy that minimizes the fixation of frameshifts after mutagenic translesion synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号