首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Di Giannuario A  Pieretti S 《Peptides》2000,21(7):1125-1130
The effects induced by nociceptin on morphine-induced release of dopamine (DA), 3,4-dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and nucleus caudate were studied in rats by microdialysis with electrochemical detection. Nociceptin administered intracerebroventricularly (i.c.v.) at doses of 2, 5 and 10 nmol/rat changed neither DA nor metabolites release in the shell of the nucleus accumbens or in the nucleus caudate. Morphine administered intraperitoneally (i.p.) (2, 5, and 10 mg/kg) increased DA and metabolites release more in the shell of the nucleus accumbens than in the nucleus caudate. When nociceptin (5 or 10 nmol) was administered 15 min before morphine (5 or 10 mg/kg), it significantly reduced morphine-induced DA and metabolites release in the shell of the nucleus accumbens, whereas only a slight, nonsignificant reduction was observed in the nucleus caudate. Our data indicate that nociceptin may regulate the stimulating action associated with morphine-induced DA release more in the nucleus accumbens than in the nucleus caudate, and are consistent with recent observations that nociceptin reversed ethanol- and morphine-induced conditioned place preference. Therefore, the nociceptin-induced reduction of DA release stimulated by morphine in the nucleus accumbens, and the results obtained with nociceptin in the conditioned place preference procedure suggest a role for nociceptin in the modulation of the behavioral and neurochemical effects of abuse drugs.  相似文献   

2.
The effect of subcutaneously injected DT gamma E (beta-endorphin, (beta E)2-17) on the pineal melatonin level was compared with that of closely related peptides and the neuroleptic drug haloperidol. As found previously, DT gamma E (3 ng/rat and 300 ng/rat) increased the melatonin levels. Similar doses of DT alpha E (beta E 2-16), DT beta E (beta E 2-31), gamma E (beta E 1-17), alpha E (beta E 1-16) and beta E failed to significantly change the melatonin levels in both the dark and the light phase. Haloperidol in a dose of 300 ng/rat exhibited a similar effect as DT gamma E.  相似文献   

3.
Lesion of the hippocampal formation affects in different ways the dopamine release in response to the two phases of emotional conditioning: increases the acquisition and exerts no effect on the expression of the reflex in rats.  相似文献   

4.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.  相似文献   

5.
The effects of microinfusingl-glutamate, serotonin (5-HT), (±)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH DPAT; a 5-HT1A agonist), and muscimol (a GABAA agonist) into the dorsal raphe nucleus on the extracellular levels of 5-HT, dopamine (DA) and their metabolites in the nucleus accumbens were studied in unanesthetized, freely moving, adult male Wistar rats, using the technique of microdialysis coupled with small-bore HPLC. Administration of 0.75 gl-glutamate produced a 25–50% increase (P<0.05) in the extracellular levels of both 5-HT and DA. On the other hand, infusion of 8-OH DPAT and, to a lesser extent, 5-HT produced a significant (P<0.05) decrease in the extracellular levels of both 5-HT and DA. Muscimol (0.25 or 0.50 g) had little effect on the extracellular concentrations of 5-HT or DA following its administration. In general, the extracellular levels of the major metabolites of 5-HT and DA in the nucleus accumbens were not altered by microinfusion of any of the agents. The data indicate that (a) the 5-HT neurons projecting to the nucleus accumbens from the dorsal raphe nucleus can be activated by excitatory amino acid receptors and inhibited by stimulation of 5-HT1A autoreceptors, and (b) the dorsal raphe nucleus 5-HT neuronal system may regulate the ventral tegmental area DA projection to the nucleus accumbens.Special issue dedicated to Dr. Morris H. Aprison  相似文献   

6.
DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) treatment (50 mg/kg i.p., 10 days previously) significantly decreased the noradrenaline (NA) content of the rostral part of the nucleus accumbens. The medial and caudal areas were not affected. The nucleus accumbens appears to receive noradrenergic innervation predominantly from subcoeruleus nuclei of the pons-medulla while the locus coeruleus neurons project to the rostral area. The isoproterenol-induced enhancement of the K+-evoked release of [3H]dopamine (DA) was not affected by DSP4 treatment. Noradrenergic denervation does not appear to have been sufficient to cause up-regulation of postsynaptic -adrenoceptors.  相似文献   

7.
The influence of the sulfated cholecystokinin octapeptide (CCK-8S) on the synaptosomal high-affinity [3H]dopamine (DA) uptake was investigated in the medial and lateral part of nucleus accumbens in rats. CCK-8S induced a concentration-dependent biphasic inhibition of [3H]-DA uptake in both subregions. After preincubation of CCK-8S with the synaptosomes the inhibitory effect was completely abolished. Kinetic analysis of the uptake influence suggests an uncompetitive inhibition by CCK-8S; this means that CCK-8S attacks only the DA-uptake carrier complex by inhibitory manner. The possible regulatory relevance of this mechanism is discussed.  相似文献   

8.
The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC). Recent behavioral data suggest that the endocannabinoid system also plays a role in this respect. Here we investigated the role of cannabinoid CB1 receptor activity in amphetamine-induced monoamine release in the NAC and/or mPFC of rats using in vivo microdialysis. Results show that systemic administration of a low, clinically relevant dose of amphetamine (0.5mg/kg) robustly increased dopamine and norepinephrine release (to ~175-350% of baseline values) in the NAC shell and core subregions as well as the ventral and dorsal parts of the mPFC, while moderately enhancing extracellular serotonin levels (to ~135% of baseline value) in the NAC core only. Although systemic administration of the CB1 receptor antagonist SR141716A (0-3mg/kg) alone did not affect monoamine release, it dose-dependently abolished amphetamine-induced dopamine release specifically in the NAC shell. SR141716A did not affect amphetamine-induced norepinephrine or serotonin release in any of the brain regions investigated. Thus, the effects of acute CB1 receptor blockade on amphetamine-induced monoamine transmission were restricted to dopamine, and more specifically to mesolimbic dopamine projections into the NAC shell. This brain region- and monoamine-selective role of CB1 receptors is suggested to subserve the behavioral effects of amphetamine.  相似文献   

9.
Mori K  Kim J  Sasaki K 《Peptides》2011,32(2):246-252
Orexin (ORX) plays a critical role in reward-seeking behavior for natural rewards and drugs of abuse. The mesolimbic dopamine (DA) pathway that projects into the nucleus accumbens (NAc) from the ventral tegmental area is deeply involved in the neural mechanisms underlying reward, drug abuse and motivation. A recent study demonstrated that ORX-immunopositive fibers densely project into the shell of the NAc (NAcSh), suggesting that the NAcSh might be a site of the interaction between the ORXergic and DAergic systems for reward-seeking behavior. Therefore, the electrophysiological effects of ORX-B and DA on NAcSh neurons were examined extracellularly in rat brain slice preparations. ORX-B excited approximately 78% of neurons tested and inhibited 4%, whereas DA excited 50% and inhibited 22% of NAcSh neurons. These excitations and inhibitions persisted during synaptic blockade in a low-Ca2+/high-Mg2+ solution. DA-induced excitation was attenuated by SCH23390 or sulpiride, whereas DA-induced inhibition was suppressed by sulpiride. Of the neurons that were excited by ORX-B, 71% and 18% were excited and inhibited by DA, respectively. In 63% of neurons that were excited by ORX-B, the simultaneous application of ORX-B and DA increased the firing rate to two times greater than ORX-B alone, whereas, the simultaneous application significantly decreased the neuronal firing rate by 73% in the remaining 37% compared to ORX-B. These results suggest that an interaction between the ORXergic and DAergic systems occurs in the NAcSh and that the NAcSh is involved in the neural mechanisms in which ORX participates in the regulation of reward-seeking behavior.  相似文献   

10.
We have previously demonstrated that repeated, but not acute, methamphetamine (METH) treatment increases tissue plasminogen activator (tPA) activity in the brain, which is associated with the development of behavioral sensitization to METH. In this study, we investigated whether the tPA-plasmin system is involved in the development of sensitization in METH-induced dopamine release in the nucleus accumbens (NAc). There was no difference in acute METH-induced increase in extracellular dopamine levels in the NAc between wild-type and tPA-deficient (tPA−/−) mice. Repeated METH treatment resulted in a significant enhancement of METH- induced dopamine release in wild-type mice, but not tPA−/− mice. Microinjection of exogenous tPA or plasmin into the NAc of wild-type mice significantly potentiated acute METH- induced dopamine release. Degradation of laminin was evident in brain tissues incubated with tPA plus plasminogen or plasmin in vitro although tPA or plasminogen alone had no effect. Immunohistochemical analysis revealed that microinjection of plasmin into the NAc reduced laminin immunoreactivity without neuronal damage. Our findings suggest that the tPA-plasmin system participates in the development of behavioral sensitization induced by repeated METH treatment, by regulating the processes underlying the sensitization of METH-induced dopamine release in the NAc, in which degradation of laminin by plasmin may play a role.  相似文献   

11.
The prefrontal cortex (PFC) is thought to provide an excitatory influence on the output of mesoaccumbens dopamine neurons. The evidence for this influence primarily arises from findings in the rat that chemical or high-intensity and high-frequency (60-200 Hz) electrical stimulations of PFC increase burst activity of midbrain dopamine neurons, and augment terminal release of dopamine in the nucleus accumbens. However, PFC neurons in animals that are engaged in PFC-dependent cognitive tasks increase their firing frequency from a baseline of 1-3 Hz to 7-10 Hz, suggesting that the commonly used high-frequency stimulation parameters of the PFC may not be relevant to the behavioral states that are associated with PFC activation. We investigated the influence of PFC activation at lower physiologically relevant frequencies on the release of dopamine in the nucleus accumbens. Using rapid (5-min) microdialysis measures of extracellular dopamine in the nucleus accumbens, we found that although PFC stimulation at 60 Hz produces the expected increases in accumbal dopamine release, the same amplitude of PFC stimulation at 10 Hz significantly decreased these levels. These results indicate that activation of PFC, at frequencies that are associated with increased cognitive demand on this region, inhibits the mesoaccumbens dopamine system.  相似文献   

12.
In vivo electrochemical techniques were used to study the effects of the sulfated (CCK8-S) and unsulfated (CCK8-US) forms of cholecystokinin octapeptide on apomorphine-induced inhibition of dopamine (DA) release in the nucleus accumbens of the anesthetized rat. A dose-dependent inhibition of DA release was observed with intravenous (i.v.) injections of apomorphine. CCK8-S administered i.v. at the nadir of the apomorphine-induced inhibition of DA release produced a transient and dose-dependent increase followed by a prolonged decrease in DA release CCK8-US was ineffective in altering apomorphine's inhibitory effects on DA release. The CCK receptor antagonist proglumide injected i.v. 10 min after apomorphine administration had no effect on apomorphine-induced inhibition of DA release, but blocked the effects of CCK8-S on this inhibition. Given that apomorphine may inhibit DA release by a direct hyperpolarizing action on DA neurons, the observation that CCK8-S temporarily reverses apomorphine-induced effects and further inhibits DA release suggests that CCK8-S exerts its inhibitory effects via a process of depolarization block in DA neurons. These findings indicate that apomorphine and CCK8-S may inhibit DA release in vivo by opposite effects on DA cell membrane potentials and suggest that endogenously released CCK may serve to modulate mesolimbic DA neurotransmission.  相似文献   

13.
A number of published studies reported a correlation between the paw preference in mice and asymmetry of tissue concentrations of dopamine (DA) and DA metabolites measured in the nucleus accumbens (NAcb) the DA concentration being higher in the nucleus ipsylateral to a preferred paw. This study aimed to investigate whether such asymmetry existed in rats. The paw preference was defined by reaching into a small horizontal tube for a food pellet. Tissue concentration of DA was measured by high-performance liquid chromatography with electrochemical detection. It was shown that the DA concentration in the left NAcb was significantly higher in "left-handed" rats than in "right-handed" animals. Within the group of "right-handers", the DA concentration was significantly higher in the right NAcb than in the left NAcb. The results confirm in part the experimental data obtained in mice and support the hypothesis that the paw preference is paralleled by elevated tissue DA in the ipsylateral NAcb of rodents.  相似文献   

14.
Ethanol (10–200 mM) transiently increased tritium overflow from superfused rat nucleus accumbens slices previously incubated with [3H]dopamine (DA) and [14C]choline. The effect was greater in striatal tissue and did not appear to be a non-specific membrane effect since [14C]acetylcholine (ACh) release was not affected. Lack of antagonism by picrotoxin suggested that -aminobutyric acid (GABA) receptors were not involved. Calcium was not a requirement and the DA uptake blocker, nomifensine, was without effect. Ethanol appeared to be causing [3H]DA release into the cytoplasm. K+-stimulated release of [3H]DA and [14C]ACh from nucleus accumbens and striatal slices was not affected. Clonidine-mediated inhibition of the K+-evoked release of [3H]DA remained unaltered. Ethanol attenuated the isoproterenol-induced enhancement of [3H]DA release. Ethanol therefore appeared to interact with components of the DA terminal causing a transient increase in the release of neurotransmitter without impairing K+-evoked release but apparently interfering with the isoproterenol-induced effect.  相似文献   

15.
We used two, 3-min field stimulation cycles 30 min apart (S1, S2) in 3H-norepinephrine-loaded, superfused rat nucleus tractus solitarii-dorsal motor vagal nucleus (NTS-DVN) slices. The stimulation-induced release was expressed as the area above the baseline. Drugs were introduced 12 min before S2 and drug actions were characterized in terms of alterations of S2/S1 ratios. The S2/S1 ratio was 1.047 (0.946-1.159, n = 4, geometric mean and 95% confidence interval) in controls and 0.336 (0.230-0.490, n = 3), 0.726 (0.590-0.892, n = 4), 0.613 (0.594-0.683, n = 4) and 0.665 (0.500-0.886, n = 4) in the presence of 10(-6) M clonidine, D-Ala(2),MePhe(4),Gly(5)-ol-enkephalin (DAMGO), endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2), EM-1) and -2 (Tyr-Pro-Phe-Phe-NH(2), EM-2) [the latter two in the presence of 10(-4) M diprotin A, an inhibitor of dipeptidyl-aminopeptidase IV (DAP-IV) enzyme]. The effect of DAMGO at 10(-5) M was significantly higher than at 10(-6) M, whereas the effect of endomorphins did not differ at the two concentration levels. Diprotin A potentiated only very modestly the action of endomorphins. These data (a) confirm the presence of functional mu-opioid receptors in the vagal complex, (b) render it likely that the enzymic degradation of endomorphins is not a highly effective process in brain slices and (c) may suggest that the apparent ceiling in the effect of endomorphins might be related to their partial agonist property.  相似文献   

16.
The effect of reserpine (2 mg/kg i.p.) on both locomotor activity and the turnover of dopamine metabolite in the rat nucleus accumbens was estimated by using an activity monitor (Animex) and by in vivo brain microdialysis. Three to five hours after reserpine administration locomotor activity was reduced and there was a concomitant increase in the level of the dopamine metabolite, homovamillic acid. These findings suggest that depletion of dopamine from the nucleus accumbens may result in decreased locomotor activity. The data support the notion that dopamine in this tissue contributes to the control of locomotion.  相似文献   

17.
Adenosine, by acting on adenosine A(1) and A(2A) receptors, exerts opposite modulatory roles on striatal extracellular levels of glutamate and dopamine, with activation of A(1) inhibiting and activation of A(2A) receptors stimulating glutamate and dopamine release. Adenosine-mediated modulation of striatal dopaminergic neurotransmission could be secondary to changes in glutamate neurotransmission, in view of evidence for a preferential colocalization of A(1) and A(2A) receptors in glutamatergic nerve terminals. By using in vivo microdialysis techniques, local perfusion of NMDA (3, 10 microm), the selective A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3, 10 microm), the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 300, 1000 microm), or the non-selective A(1)-A(2A) receptor antagonist in vitro caffeine (300, 1000 microm) elicited significant increases in extracellular levels of dopamine in the shell of the nucleus accumbens (NAc). Significant glutamate release was also observed with local perfusion of CGS 21680, CPT and caffeine, but not NMDA. Co-perfusion with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV; 100 microm) counteracted dopamine release induced by NMDA, CGS 21680, CPT and caffeine. Co-perfusion with the selective A(2A) receptor antagonist MSX-3 (1 microm) counteracted dopamine and glutamate release induced by CGS 21680, CPT and caffeine and did not modify dopamine release induced by NMDA. These results indicate that modulation of dopamine release in the shell of the NAc by A(1) and A(2A) receptors is mostly secondary to their opposite modulatory role on glutamatergic neurotransmission and depends on stimulation of NMDA receptors. Furthermore, these results underscore the role of A(1) vs. A(2A) receptor antagonism in the central effects of caffeine.  相似文献   

18.
The role of dopamine in the nucleus accumbens in analgesia   总被引:7,自引:0,他引:7  
Altier N  Stewart J 《Life sciences》1999,65(22):2269-2287
Opioid and psychostimulant drugs have long been used for the relief of chronic pain in the clinical situation. Animal studies confirm that these drugs alleviate persistent or tonic pain. Little is known, however, about the neural systems underlying the suppression of tonic pain except that they are different from those mediating the suppression of phasic (i.e., sharp and short-lasting) pain. Although spinal and brainstem-descending pain suppression mechanisms play a role in mediating the inhibition of tonic pain, it appears that this response is additionally mediated by the activation of mechanisms lying rostral to the brainstem. Recent studies suggest that the activation of mesolimbic dopamine (DA) neurons, arising from the cell bodies of the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAcc), plays an important role in mediating the suppression of tonic pain. Other studies suggest that this pain-suppression system involving the activation of mesolimbic DA neurons is naturally triggered by exposure to stress, through the endogenous release of opioids and substance P (SP) in the midbrain.  相似文献   

19.
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi‐synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro‐β‐erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi‐synaptic modulation of DA release that is absent with optogenetically targeted stimulation.

  相似文献   


20.
Stressful events are accompanied by modifications in dopaminergic transmission in distinct brain regions. As the activity of the neuronal dopamine (DA) transporter (DAT) is considered to be a critical mechanism for determining the extent of DA receptor activation, we investigated whether a 3-week exposure to unavoidable stress, which produces a reduction in DA output in the nucleus accumbens shell (NAcS) and medial prefrontal cortex (mPFC), would affect DAT density and DA D1 receptor complex activity in the NAcS, mPFC and caudate-putamen (CPu). Rats exposed to unavoidable stress showed a decreased DA output in the NAcS accompanied by a decrease in the number of DAT binding sites, and an increase in the number of DA D1 binding sites and Vmax of SKF 38393-stimulated adenylyl cyclase. In the mPFC, stress exposure produced a decrease in DA output with no modification in DAT binding or in DA D1 receptor complex activity. Moreover, in the CPu stress exposure induced no changes in DA output or in the other neurochemical variables examined. This study shows that exposure to a chronic unavoidable stress that produces a decrease in DA output in frontomesolimbic areas induced several adaptive neurochemical modifications selectively in the nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号