首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Feng J  Ling CC 《Carbohydrate research》2010,345(17):2450-2457
2-Acetamido-2-deoxy-d-galactose (d-GalNAc) is an important monosaccharide widely distributed in nature. However, unlike its 4-epimer, the 2-acetamido-2-deoxy-d-glucose (d-GlcNAc), d-GalNAc is very expensive to obtain from commercial sources. Herein we report an efficient transformation that allows for the conversion of d-GlcNAc to a d-GalNAc derivative 7 in three steps and in 58.4-75% overall yields. The process was carried out on a greater than 20-g scale without the need of chromatography. The versatility of compound 7 was demonstrated by the synthesis of several useful monosaccharides and thiodisaccharides containing a d-GalNAc residue.  相似文献   

2.
The Methanococcus maripaludis MMP0352 protein belongs to an oxidoreductase family that has been proposed to catalyze the NAD+-dependent oxidation of the 3′′ position of uridine diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc), forming a 3-hexulose sugar nucleotide. The heterologously expressed MMP0352 protein was purified and shown to efficiently catalyze UDP-GlcNAc oxidation, forming one NADH equivalent. This enzyme was used to develop a fixed endpoint fluorometric method to analyze UDP-GlcNAc. The enzyme is highly specific for this acetamido sugar nucleotide, and the procedure had a detection limit of 0.2 μM UDP-GlcNAc in a 1-ml sample. Using the method of standard addition, UDP-GlcNAc concentrations were measured in deproteinized extracts of Escherichia coli, Saccharomyces cerevisiae, and HeLa carcinoma cells. Equivalent concentrations were determined by both enzymatic and chromatographic analyses, validating this method. This procedure can be adapted for the high-throughput analysis of changes in cellular UDP-GlcNAc concentrations in time series experiments or inhibitor screens.  相似文献   

3.
A lectin with antiproliferative activity towards human cancer cell lines and mitogenic towards human peripheral blood mononuclear cells was purified from the rhizomes of Arundo donax (Linn.) by affinity chromatography on N-acetyl-d-glucosamine linked to epoxy-activated sepharose-6B. The pure preparation apparently yielded a single band of approximately 15 kDa on SDS-PAGE, pH 8.3, under both reducing and non-reducing conditions. The molecular mass of native lectin was 32 kDa as determined by gel filtration chromatography. This showed the lectin to be a dimer, with subunits not held together by disulphide linkages. The A. donax lectin (ADL) agglutinated rabbit erythrocytes and the agglutination was inhibited by N-acetyl-d-glucosamine and its di- and trimer. The lectin was thermostable upto 55 degrees C and showed optimum activity in the range of pH 7.0-9.0 and comprised of 2.1% carbohydrate content.  相似文献   

4.
The high molecular weight of chitosan, which results in a poor solubility at neutral pH values and high viscosity aqueous solutions, limits its potential uses in the fields of food, health and agriculture. However, most of these limitations are overcome by chitosan oligosaccharides obtained by enzymatic hydrolysis of the polymer. Several commercial enzymes with different original specificities were assayed for their ability to hydrolyze a 93% deacetylation degree chitosan and compared with a chitosanase. According to the patterns of viscosity decrease and reducing end formation, three enzymes--cellulase, pepsin and lipase A--were found to be particularly suitable for hydrolyzing chitosan at a level comparable to that achieved by chitosanase. Unlike the appreciable levels of both 2-amino-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-glucose monomers released from chitosan by the other enzymes after a 20h-hydrolysis (4.6-9.1% of the total product weight), no monomer could be detected following pepsin cleavage. As a result, pepsin produced a higher yield of chitosan oligosaccharides than the other enzymes: 52% versus as much as 46%, respectively. Low molecular weight chitosans accounted for the remaining 48% of hydrolysis products. The calculated average polymerization degree of the products released by pepsin was around 16 units after 20h of hydrolysis. This product pattern and yield are proposed to be related to the bond cleavage specificity of pepsin and the high deacetylation degree of chitosan used as substrate. The optimal reaction conditions for hydrolysis of chitosan by pepsin were 40 degrees C and pH 4.5, and an enzyme/substrate ratio of 1:100 (w/w) for reactions longer than 1h.  相似文献   

5.
N-Acyl-d-Glucosamine 2-epimerase (AGE) catalyzes the reversible epimerization between N-acetyl-d-mannosamine (ManNAc) and N-acetyl-d-glucosamine (GlcNAc). Bacteroides ovatus ATCC 8483 shows 3 putative genes for AGE activity (BACOVA_00274, BACOVA_01795 and BACOVA_01816). The BACOVA_00274 gene encodes an AGE (BoAGE1) with strong similarity to the AGE previously characterized in Bacteroides fragilis. Interestingly, the BACOVA_01816 gene (BoAGE2) shares 57% identity with Anabaena sp. CH1 AGE, but has an extra 27-amino acid tag sequence in the N-terminal. When cloned and expressed in Escherichia coli Rosetta (DE3)pLys, BACOVA_01816 was able to convert ManNAc into GlcNAc and vice versa. It was stable over a broad range of pHs and its activity was enhanced by ATP (20 μM). The incubation with ATP stabilized its structure, raising its melting temperature by about 8 °C. In addition, the catalytic efficiency for ManNAc synthesis was higher than that for GlcNAc synthesis. These characteristics make BoAGE2 a promising biocatalyst for sialic acid production using cheap GlcNAc as starting material. BoAGE2 could be considered a Renin-binding Protein and its interaction with renin was studied for the first time in a prokaryotic AGE. Surprisingly, renin activated BoAGE2, an effect which is contrary to that described for mammalian AGE and unrelated with the unique N-terminal tag, since a mutant without this tag was also activated by renin. When BoAGE2 sequence was compared with other related (real and putative) AGE described in the databases, it was seen that AGE enzymes can be divided in 3 different groups. The relationship between these groups is also discussed.  相似文献   

6.
N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) catalyzes the reversible epimerization between N-acetyl-D-glucosamine (GlcNAc) and N-acetyl-D-mannosamine (ManNAc). We report here the 2.0 A resolution crystal structure of the GlcNAc 2-epimerase from Anabaena sp. CH1. The structure demonstrates an (alpha/alpha)(6) barrel fold, which shows structural homology with porcine GlcNAc 2-epimerase as well as a number of glycoside hydrolase enzymes and other sugar-metabolizing enzymes. One side of the barrel structure consists of short loops involved in dimer interactions. The other side of the barrel structure is comprised of long loops containing six short beta-sheets, which enclose a putative central active-site pocket. Site-directed mutagenesis of conserved residues near the N-terminal region of the inner alpha helices shows that R57, H239, E308, and H372 are strictly required for activity. E242 and R375 are also essential in catalysis. Based on the structure and kinetic analysis, H239 and H372 may serve as the key active site acid/base catalysts. These results suggest that the (alpha/alpha)(6) barrel represents a steady fold for presenting active-site residues in a cleft at the N-terminal ends of the inner alpha helices, thus forming a fine-tuned catalytic site in GlcNAc 2-epimerase.  相似文献   

7.
Hydrazinolysis is a versatile method to liberate N-linked glycans from glycoproteins. However, the method is usually performed with anhydrous hydrazine, a highly toxic and explosive chemical used in rocket fuel. Thus despite the need to produce functionally important glyco-materials, hydrazinolysis is limited to small scale (e.g., 0.2-1 mL) reactions. In the present study, we report an alternative procedure for hydrazinolysis using hydrazine monohydrate in place of anhydrous hydrazine. The developed procedure was applied to both purified glycoproteins (Taka-amylase and transferrin) and hen egg yolk protein fraction with comparable yields to the traditional method using anhydrous hydrazine. The sialyl linkage of alpha2-6disialobiantennary oligosaccharides proved to be fully stable. The developed procedure facilitated the large-scale preparation of N-linked glycans. The new method should make a substantial contribution to both small- and large-scale production of functional glycans, including therapeutically relevant human-type glycans.  相似文献   

8.
Finely powdered alpha- and beta-chitin can be completely hydrolyzed with chitinase (EC 3.2.1.14) and beta-N-acetylhexosaminidase (EC 3.2.1.52) for the production of 2-acetamido-2-deoxy-D-glucose (GlcNAc). Crude chitinase from Burkholderia cepacia TU09 and Bacillus licheniformis SK-1 were used to digest alpha- and beta-chitin powder. Chitinase from B. cepacia TU09 produced GlcNAc in greater than 85% yield from beta- and alpha-chitin within 1 and 7 days, respectively. B. licheniformis SK-1 chitinase completely hydrolyzed beta-chitin within 6 days, giving a final GlcNAc yield of 75%, along with 20% of chitobiose. However, only a 41% yield of GlcNAc was achieved from digesting alpha-chitin with B. licheniformis SK-1 chitinase.  相似文献   

9.
The crystal structures of three vancomycin complexes with two vancomycin-sensitive cell-wall precursor analogs (diacetyl-Lys-D-Ala-D-Ala and acetyl-D-Ala-D-Ala) and a vancomycin-resistant cell-wall precursor analog (diacetyl-Lys-D-Ala-D-lactate) were determined at atomic resolutions of 1.80 A, 1.07 A, and 0.93 A, respectively. These structures not only reconfirm the "back-to-back" dimerization of vancomycin monomers and the ligand-binding scheme proposed by previous experiments but also show important structural features of strategies for the generation of new glycopeptide antibiotics. These structural features involve a water-mediated antibiotic-ligand interaction and supramolecular structures such as "side-by-side" arranged dimer-to-dimer structures, in addition to ligand-mediated and "face-to-face" arranged dimer-to-dimer structures. In the diacetyl-Lys-D-Ala-D-lactate complex, the interatomic O...O distance between the carbonyl oxygen of the fourth residue of the antibiotic backbone and the ester oxygen of the D-lactate moiety of the ligand is clearly longer than the corresponding N-H...O hydrogen-bonding distance observed in the two other complexes due to electrostatic repulsion. In addition, two neighboring hydrogen bonds are concomitantly lengthened. These observations provide, at least in part, a molecular basis for the reduced antibacterial activity of vancomycin toward vancomycin-resistant bacteria with cell-wall precursors terminating in -D-Ala-D-lactate.  相似文献   

10.
Heuts DP  Janssen DB  Fraaije MW 《FEBS letters》2007,581(25):4905-4909
Chitooligosaccharide oxidase (ChitO) catalyzes the oxidation of C1 hydroxyl moieties on chitooligosaccharides and in this way displays a different substrate preference as compared to other known oligosaccharide oxidases. ChitO was identified in the genome of Fusarium graminearum and a structural model revealed that one active site residue (Q268) was likely to be involved in the recognition of the N-acetyl moiety on the chitooligosaccharide substrates. The substrate specificity of wild type ChitO and the Q268R mutant were examined and confirmed that Q268 is indeed involved in N-acetyl recognition.  相似文献   

11.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α66-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α66-barrel.  相似文献   

12.
An extract from 50 kinds of fruits and vegetables was fermented to produce a new beverage. Natural fermentation of the extract was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Two new saccharides were found in this fermented beverage. The saccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methylated derivatives as well as MALDI-TOF MS and NMR measurements were used for structural confirmation. The (1)H and (13)C NMR signals of each saccharide were assigned using 2D-NMR including COSY, HSQC, HSQC-TOCSY, CH(2)-HSQC-TOCSY, and CT-HMBC experiments. The saccharides were identified as beta-D-fructopyranosyl-(2-->6)-beta-D-glucopyranosyl-(1-->3)-D-glucopyranose and beta-D-fructopyranosyl-(2-->6)-[beta-D-glucopyranosyl-(1-->3)]-D-glucopyranose.  相似文献   

13.
YteR, a hypothetical protein with unknown functions, is derived from Bacillus subtilis strain 168 and has an overall structure similar to that of bacterial unsaturated glucuronyl hydrolase (UGL), although it exhibits little amino acid sequence identity with UGL. UGL releases unsaturated glucuronic acid from glycosaminoglycan treated with glycosaminoglycan lyases. The amino acid sequence of YteR shows a significant homology (26% identity) with the hypothetical protein YesR also from B. subtilis strain 168. To clarify the intrinsic functions of YteR and YesR, both proteins were overexpressed in Escherichia coli, purified, and characterized. Based on their gene arrangements in genome and enzyme properties, YteR and YesR were found to constitute a novel enzyme activity, "unsaturated rhamnogalacturonyl hydrolase," classified as new glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) obtained from RG type-I treated with RG lyases and releases an unsaturated galacturonic acid. The crystal structure of YteR complexed with unsaturated chondroitin disaccharide (UGL substrate) was obtained and compared to the structure of UGL complexed with the same disaccharide. The UGL substrate is sterically hindered with the active pocket of YteR. The protruding loop of YteR prevents the UGL substrate from being bound effectively. The most likely candidate catalytic residues for general acid/base are Asp143 in YteR and Asp135 in YesR. This is supported by three-dimensional structural and site-directed mutagenesis studies. These findings provide molecular insights into novel enzyme catalysis and sequential reaction mechanisms involved in RG-I depolymerization by bacteria.  相似文献   

14.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

15.
16.
Flavonoids and isoflavonoids are potent inhibitors of glucose efflux in human erythrocytes. Net changes of sugars inside the cells were measured by right angle light scattering. The inhibitory potency of hydroxylated flavonoids depends on the pH of the medium. The apparent affinity is maximal at low pH where the molecule is in the undissociated form. The following K(i)-values at pH 6.5 in microM have been obtained: phloretin 0.37+/-0.03, myricetin 0.76+/-0.42, quercetin 0.93+/-0.28, kaempferol 1.33+/-0.17, isoliquiritigenin 1.96, genistein 3.92+/-0.62, naringenin 8.88+/-1.88, 7-hydroxyflavone 17.58+/-3.15 and daidzein 18.62+/-2.85. Flavonoids carrying hydroxyl groups are weak acids and are deprotonated at high pH-values. From spectral changes pK-values between 6.80 (naringenin) and 7.73 (myricetin) have been calculated. No such pK-value could be obtained from quercetin which was rather unstable at alkaline pH. Flavone itself without a hydroxyl group does not demonstrate any absorbance changes at different pH-values and no significant change in inhibition of glucose transport with pH (K(i)-value around 35 microM). In this respect it is similar to the antiestrogens diethylstilbestrol, tamoxifen and cyclofenil with K(i)-values for glucose efflux inhibition of 2.61+/-0.30, 6.75+/-2.03 and 3.97+/-0.54 microM. Except for phloretin, the flavonoids investigated have planar structures. The inhibitory activity in glucose efflux of planar flavonoids increases exponentially with the number of hydroxyl groups in the molecule.  相似文献   

17.
1-O-Acetyl-beta-D-galactopyranose (AcGal), a new substrate for beta-galactosidase, was synthesized in a stereoselective manner by the trichloroacetimidate procedure. Kinetic parameters (K(M) and k(cat)) for the hydrolysis of 1-O-acetyl-beta-D-galactopyranose catalyzed by the beta-D-galactosidase from Penicillium sp. were compared with similar characteristics for a number of natural and synthetic substrates. The value for k(cat) in the hydrolysis of AcGal was three orders of magnitude greater than for other known substrates. The beta-galactosidase hydrolyzes AcGal with retention of anomeric configuration. The transglycosylation activity of the beta-D-galactosidase in the reaction of AcGal and methyl beta-D-galactopyranoside (1) as substrates was investigated by 1H NMR spectroscopy and HPLC techniques. The transglycosylation product using AcGal as a substrate was beta-D-galactopyranosyl-(1-->6)-1-O-acetyl-beta-D-galactopyranose (with a yield of approximately 70%). In the case of 1 as a substrate, the main transglycosylation product was methyl beta-D-galactopyranosyl-(1-->6)-beta-D-galactopyranoside. Methyl beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranoside was found to be minor product in the latter reaction.  相似文献   

18.
Phosphorylation of CMP and formation of CDP-choline were tested with various haploid cells of yeasts. Most of them had more or less the ability, but a mutant (Lys–M7, alpha type) of Saccharomyces rouxii was found to lack the ability. Further study revealed the change of the temperature-sensitivity of the mutant, which could not produce CDP-choline when treated at 37°C, whereas it could at 16°C. The growth of the mutant was more sensitive to temperatures than that of the wild strain. The former did not grow at 36.3°C, while the latter grew.  相似文献   

19.
Class A penicillin-binding proteins (PBPs) catalyze the last two steps in the biosynthesis of peptidoglycan, a key component of the bacterial cell wall. Both reactions, glycosyl transfer (polymerization of glycan chains) and transpeptidation (cross-linking of stem peptides), are essential for peptidoglycan stability and for the cell division process, but remain poorly understood. The PBP-catalyzed transpeptidation reaction is the target of β-lactam antibiotics, but their vast employment worldwide has prompted the appearance of highly resistant strains, thus requiring concerted efforts towards an understanding of the transpeptidation reaction with the goal of developing better antibacterials. This goal, however, has been elusive, since PBP substrates are rapidly deacylated. In this work, we provide a structural snapshot of a “trapped” covalent intermediate of the reaction between a class A PBP with a pseudo-substrate, N-benzoyl-d-alanylmercaptoacetic acid thioester, which partly mimics the stem peptides contained within the natural, membrane-associated substrate, lipid II. The structure reveals that the d-alanyl moiety of the covalent intermediate (N-benzoyl-d-alanine) is stabilized in the cleft by a network of hydrogen bonds that place the carbonyl group in close proximity to the oxyanion hole, thus mimicking the spatial arrangement of β-lactam antibiotics within the PBP active site. This arrangement allows the target bond to be in optimal position for attack by the acceptor peptide and is similar to the structural disposition of β-lactam antibiotics with PBP clefts. This information yields a better understanding of PBP catalysis and could provide key insights into the design of novel PBP inhibitors.  相似文献   

20.
The enzymatic characterization of GDP-d-mannose 3',5'-epimerase (GME), a key enzyme in the biosynthesis of vitamin C in plants is described. The GME gene (Genbank Accession No. AB193582) in rice was cloned, and expressed as a fusion protein in Escherichia coli. Reaction products from GDP-d-mannose, as produced by GME catalysis, were separated by recycling HPLC on an ODS column, and were determined to be GDP-l-galactose and GDP-l-gulose, based on their NMR spectra and sugar analysis. The reaction catalyzed by GME was inhibited by GDP, and was strongly accelerated by NAD(+) in contrast to the case of GME from Arabidopsis thaliana. This difference in the effect of NAD(+) on GME activity can be attributed to the NAD binding domain which is conserved in the rice gene, but not in the Arabidopsis thaliana gene. The apparent K(m) and k(cat) were determined to be 1.20x10(-5)M and 0.127s(-1), respectively, in the presence of 20microM NAD(+). The fractions of GDP-d-mannose, GDP-l-galactose and GDP-l-gulose, at equilibrium, were approximately 0.75, 0.20 and 0.05, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号