首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regional variations in the absorption of fructose and glycine have been studied in the intestine and pyloric caeca of the fish, Ophiocephalus punctatus in vivo, by preparing intestinal sacs. Diffusion of amino acids out of the intracellular compartment of the intestine was observed in all the portions of the intestine. The pyloric caeca showed maximum transport of fructose. Absorption of fructose was slightly more in the posterior intestine than in the anterior intestinal sac. Maximum transport of glycine took place in the anterior intestinal sac. Pyloric caeca adsorbed more glycine than did the posterior sac. For both nutrients, the rate of uptake did not differ significantly in the upper and the lower portion of the intestine. In all the portions, the transport of fructose was more rapid than that of glycine. The experiments revealed that though the nutrients are absorbed in the entire length of the intestine, the quantity absorbed varies from one portion to another and is dependent on the nature of the compound absorbed.  相似文献   

2.
Evidence is presented for the proton-coupled transport of sucrose and glutamine in purified plasma membrane vesicles isolated from cotyledons ofRicinus communis. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of sucrose and glutamine which was inhibited in the presence of carbonyl cyanide-m-chlorophenyl hydrazone. Imposition of a pH gradient plus an internal negative membrane potential stimulated uptake further. Glucose and fructose uptakes were negligible under these conditions. Sucrose uptake into the vesicles demonstrated saturation kinetics with a Km of 0.87 mol·m-3, indicating carrier-mediated transport. In support of this, uptake was very sensitive to the protein-modifying reagentp-chloromercuribenzenesulphonic acid. N-Ethylmaleimide, another sulphydryl reagent, was only slightly inhibitory. However, both reagents strongly inhibited sucrose uptake into intact cotyledons; the possible reasons for the difference between the intact and isolated systems are assessed. The value of this system for the study of sucrose and amino acid carriers is discussed.  相似文献   

3.
The transport of sugars and amino acids into the mycelium of Erysiphe pisi DC. was investigated using two different systems, intact leaf discs and mycelial suspensions. Of the sugars tested, glucose was preferentially taken up by both uninfected and mildew-infected leaf discs, whereas glutamine was taken up by both tissues at a higher rate than lysine or aspartic acid. Leaf discs from infected tissue had a greater uptake capacity than those from healthy tissue for both sugars and amino acids. The uptake of glucose was inhibited more markedly than that of sucrose and fructose by 10 μ m carbonyl cyanide m -chlorophenylhydrazone (CCCP), 1 m m N -ethylmaleimide (NEM), 1 m m diethyl pyrocarbonate (DEPC) and 1 m m phenylglyoxal, whereas 1 m m PCMBS ( p -chloro-mercuribenzenesulphonic acid) inhibited sucrose uptake to the greatest extent. Uptake of glutamine, lysine and aspartic acid was inhibited similarly by CCCP (80%), NEM (20%), DEPC (70%) and PCMBS (60%). Additionally, leaf discs were used to determine which solutes could be taken up from leaf tissue by the fungus. The uptake of sugars into the mycelium was greater than that of amino acids.
Suspensions of powdery mildew mycelium accumulated glucose at about three times the rate of sucrose or fructose, and the amino acid glutamine was taken up at three times the rate of lysine or aspartic acid. Spores separated from the suspension had a low uptake capacity.
When the reducing sugar concentration of leaf apoplastic fluid was estimated, leaves infected by powdery mildew had much higher amounts in the apoplast, whereas the activity of acid invertase also appeared to be higher in apoplastic fluids from infected leaves. When apoplastic fluid samples were run on SDS gels, an invertase antibody detected two bands in samples from infected tissues that were not found in the uninfected samples.  相似文献   

4.
SYNOPSIS. Uptake of 14C-labeled alanine, glutamate, lysine, methionine, proline, and phenylalanine by Trypanosoma equiperdum during 2-minute incubations occurred by diffusion and membrane-mediated processes. Amino acid metabolism was not detected by paper chromatography of trypanosome extracts. Most of 18 carbohydrates tested for ability to alter amino acid transport neither changed nor significantly inhibited transport. Glucose, however, stimulated glutamate, lysine and proline transport; fructose stimulated lysine uptake and 2-deoxy-D-glucose increased phenylalanine and methionine absorption. No evidence was found that the carbohydrates acted by binding to amino acid transport “sites.” Glucose inhibition of alanine, phenylalanine, and methionine uptake was linked to glycolysis. The rapid formation of alanine from glucose stimulated alanine release and, when glycolysis was blocked, glucose no longer inhibited alanine transport. Methionine and phenylalanine release was also stimulated by glucose. Glucose changed the ability of lysine, glutamate, and proline to inhibit each others’uptake, indicating that certain amino acids are preferentially absorbed by respiring cells. Analysis of free pool amino acid levels suggested that some amino acid transport systems in T. equiperdum are linked in such a way to glycolysis as to control the cell concentrations of these amino acids.  相似文献   

5.
The uptake of sugar and amino acids was affected by the presence of cations in the filling solution in both the fishes, Ophiocephalus and Heteropneustes. Under low Na+ concentration, the rate of transport decreased while an increase in Na+ concentration brought about its corresponding increase in both the fishes. Li+ was able to substitute Na+ to some extent in the filling solution in the transport of xylose, glycine and leucine. The replacement of Na+ by Li+ was more successful in xylose transport, in contrast to the transport of glycine and leucine. On the other hand, K+ was not able to substitute Na+ in the transport process. K+ inhibited the transport of glycine but did not that of xylose and leucine.  相似文献   

6.
The effect of various dietary sugars on the uptake of 1 mM leucine and 1 mM lysine by intestinal cells isolated from stock-fed and sucrose-fed rats was determined. Leucine uptake was activated by 10 mM fructose and inhibited by 10 mM glucose or 20 mM sucrose on both diets. The major dietary effect noted was a significant increase in the inhibition of leucine by glucose in the sucrose-fed rats. The uptake of lysine was minimally affected by the sugars irrespective of the diet fed. These results demonstrate an important dichotomy in the properties of glucose and fructose transport in the intestine and suggest that dietary fructose may increase the transport of certain amino acids.  相似文献   

7.
Abstract : In this work, it is shown that the Ca2+-transport ATPase found in the microsomal fraction of the cerebellum can use both glucose 6-phosphate/hexokinase and fructose 1,6-bisphosphate/phosphofructokinase as ATP-regenerating systems. The vesicles derived from the cerebellum were able to accumulate Ca2+ in a medium containing ADP when either glucose 6-phosphate and hexokinase or fructose 1,6-bisphosphate and phosphofructokinase were added to the medium. There was no Ca2+ uptake if one of these components was omitted from the medium. The transport of Ca2+ was associated with the cleavage of sugar phosphate. The maximal amount of Ca2+ accumulated by the vesicles with the fructose 1,6-bisphosphate system was larger than that measured either with glucose 6-phosphate or with a low ATP concentration and phosphoenolpyruvate/pyruvate kinase. The Ca2+ uptake supported by glucose 6-phosphate was inhibited by glucose, but not by fructose 6-phosphate. In contrast, the Ca2+ uptake supported by fructose 1,6-bisphosphate was inhibited by fructose 6-phosphate, but not by glucose. Thapsigargin, a specific SERCA inhibitor, impaired the transport of Ca2+ sustained by either glucose 6-phosphate or fructose 1,6-bisphosphate. It is proposed that the use of glucose 6-phosphate and fructose 1,6-bisphosphate as an ATP-regenerating system by the cerebellum Ca2+-ATPase may represent a salvage route used at early stages of ischemia ; this could be used to energize the Ca2+ transport, avoiding the deleterious effects derived from the cellular acidosis promoted by lactic acid.  相似文献   

8.
The transport of neutral amino acids into mitochondria isolated from the hypocotyl of mung bean (Roxb.) was studied by the swelling technique. Isolated mitochondria swelled when added to an isosmotic solution of proline, serine, methionine, threonine, alanine, and glycine. The swelling was stereospecific in that it was faster in the l-amino acid than in the corresponding d-amino acid. Preincubation of the mitochondria with the sulfhydryl modifying reagents, p-mercuribenzoate and mersalyl, resulted in an inhibition of the swelling caused by proline, serine, threonine, and glycine. The swelling induced by alanine was inhibited only by mersalyl, whereas that by methionine was inhibited only by p-mercuribenzoate. In all cases, the inhibition caused by the sulfhydryl modifying reagents was readily reversible by the subsequent treatment of the mitochondria with dithiothreitol. N-Ethylmaleimide, another sulfhydryl-modifying reagent, did not cause any inhibition of the swelling. The findings indicate the existence of a protein mediated mechanism for the transport of neutral amino acids into plant mitochondria.  相似文献   

9.
Kinetic parameters for three systems of active histidine uptake by germinated conidia of Neurospora crassa have been measured. Each system appears to follow typical Michaelis-Menten kinetics when studied separately from the other systems. Under the conditions studied, the general amino acid transport system was found to account for the major portion of histidine uptake from low concentrations. Three types of transport mutants with altered growth inhibition patterns were selected in a histidine auxotroph. Growth of one mutant, type bas(a), could be inhibited by the addition of methionine to a histidine-supplemented medium, and another type, neu(a), could be inhibited by the addition of arginine. These mutants were shown to be lacking active histidine uptake by the basic amino acid and neutral amino acid transport systems, respectively. Another type of double mutant (his-3, neu(r)) could be inhibited only by the addition of very high concentrations of methionine in the presence of arginine and histidine, and the mutation appeared to have altered the specificity of the neutral amino acid permease.  相似文献   

10.
N-System Amino Acid Transport at the Blood-CSF Barrier   总被引:1,自引:1,他引:0  
Abstract: Despite l -glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in l -[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na+-dependent mechanism. The Na+-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na+-dependent uptake was inhibited neither by the A-system substrate α-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and l -glutamate γ-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The V max and K max for glutamine transport by this system were 8.1 ± 0.3 nmol/mg/min and 3.3 ± 0.4 m M , respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

11.
Glycine transport in mouse eggs and preimplantation conceptuses   总被引:3,自引:0,他引:3  
At least two Na+-dependent systems for glycine transport became detectable, while another became undetectable during preimplantation development of mouse conceptuses. Glycine was taken up by a process in eggs and cleavage-stage conceptuses which closely resembles system Gly. Mediated transport at these stages was more rapid at higher Cl- concentrations, sigmoidally related to the exogenous Na+ concentration, and strongly inhibited by sarcosine but not by amino acids with larger side chains. Moreover, neither Li+ nor choline could substitute for Na+ in stimulating glycine transport. System Gly was the only mediated process detected for glycine uptake in unfertilized and fertilized eggs and two-cell conceptuses, but two, less conspicuous, sarcosine-resistant, Na+-dependent components of transport also appeared to be present in eight-cell conceptuses. One of the latter components seemed to remain relatively inconspicuous when conceptuses formed blastocysts, while system Gly became undetectable. In contrast, the other less conspicuous component in eight-cell conceptuses appeared to become the most conspicuous transport process in blastocysts. The latter process, previously designated system B0,+, was shown here also to interact strongly with a broad scope of zwitterionic and cationic amino acid structures. Moreover, transport of glycine via system B0,+ was more rapid at higher Cl- concentrations, and this Na+-dependent process as well as Na+-independent leucine uptake were inhibited by choline. Furthermore, Na+-dependent amino acid transport in two-cell conceptuses and blastocysts was inhibited by 1.0 or 10 mM ouabain, but the inhibition was incomplete at both concentrations. Since Na+/K+-ATPase has not been detected in two-cell conceptuses, inhibition of amino acid transport by ouabain may not have been due solely to an effect on this enzyme. The level of system Gly activity decreased during the development of eight-cell conceptuses from eggs, and this decrease could contribute to an associated decline in intracellular glycine. Since other amino acids begin to compete strongly with glycine for transport when system B0,+ replaces system Gly in conceptuses, this qualitative change in transport activity may help account for a further decrease in the glycine content of conceptuses, reported elsewhere to occur after they form blastocysts.  相似文献   

12.
Melphalan, l-phenylalanine mustard, is transported by the L1210 cell through carriers of the leucine (L) type. Its initial rate of transport is inhibited by both l-leucine, a naturally occurring L system amino acid and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH), a synthetic amino acid which is transported by the L system in the Ehrlich ascites tumor cell. Both amino acids inhibited melphalan transport comparably in sodium-free medium. However, BCH, in medium containing sodium, was unable to reduce a component of melphalan transport which was readily inhibited by leucine but not by α-aminoisobutyric acid. Inhibition analysis indicated that leucine competes with BCH for transport but that a portion of leucine transport is not readily inhibited by BCH. These results suggest that in the L1210 cell melphalan is transported equally by a BCH-sensitive, sodium-independent L system and a BCH-insensitive, sodium-dependent L system.  相似文献   

13.
Threonine content of brain decreases in young rats fed a threonine-limiting, low protein diet containing a supplement of small neutral amino acids (serine, glycine and alanine), which are competitors of threonine transport in other systems (Tews et al., 1977). Threonine transport by brain slices was inhibited more by a complex amino acid mixture resembling plasma from rats fed the small neutral amino acid supplement than by mixtures resembling plasma from control rats or from rats fed a supplement of large neutral amino acids. Greater inhibition was seen with mixtures containing only the small neutral amino acids than with mixtures containing only large neutral amino acids. On an equimolar basis, serine and alanine were the most inhibitory; large neutrals were moderately so; and glycine and lysine were without effect. Threonine transport was also strongly inhibited by α-amino-n-butyric acid and homoserine, less so by α-aminoisobutyric acid, and not at all by GABA. The complex amino acid mixtures strongly inhibited α-aminoisobutyric acid transport by brain or liver slices but, in contrast to effects in brain, the extent of the inhibition in liver was not much affected by altering the composition of the mixture. Tryptophan accumulation by brain slices was effectively inhibited by other large neutral amino acids in physiologically occurring concentrations. Threonine, or a mixture of serine, glycine and alanine only slightly inhibited tryptophan uptake; basic amino acids were without effect and histidine stimulated tryptophan transport slightly. These results support the conclusion that a diet-induced decrease in the concentration in brain of a specific amino acid may be related to increased inhibition of its transport into brain by increases in the concentrations of transport-related, plasma amino acids.  相似文献   

14.
Intestinal development is typically studied using omnivores. For comparative purposes, we examined an altricial carnivore, the mink (Mustela vison). In mink, intestinal dimensions increase up to 8 wk after birth and then remain constant (length) or decrease (mass) into maturity despite continuing gains in body mass. Rates of glucose and fructose transport decline after birth for intact tissues but increase for brush-border membrane vesicles (BBMV). Rates of absorption for five amino acids that are substrates for the acidic (aspartate), basic (lysine), neutral (leucine and methionine), and imino acid (proline) carriers increase between birth and 24 h for intact tissues before declining, but increase after 2 wk for BBMV. The proportion of BBMV amino acid uptake that is Na(+)-dependent increases during development but for aspartate is nearly 100% at all ages. Tracer uptake by BBMV can be inhibited by 100 mmol/l of unlabeled amino acid, except for lysine. BBMV uptake of the dipeptide glycyl-sarcosine does not differ between ages, is not Na(+) dependent, and is only partially inhibited by 100 mmol/l unlabeled dipeptide. Despite the ability to rapidly and efficiently digest high dietary loads of protein, rates of amino acid and peptide absorption are not markedly higher than those of other mammals.  相似文献   

15.
The purpose of these studies was to define the properties of the systems that transport hexoses into adipocytes. Glucose appears to enter adipocytes on a single transport system whose maximum velocity is stimulated by insulin and which is competitively inhibited by cytochalasin B, 5-thioglucose, fructose, mannose and 3-O-methylglucose. In contrast, fructose enters adipocytes by at least two separate mechanisms, one an insulin-sensitive transporter (probably the glucose transporter) and the other a mechanism that is insensitive to insulin. The fructose concentration required for half-maximal rates of transport is at least an order of magnitude higher than that for glucose and the maximum velocity of fructose transport is more than double that for glucose.  相似文献   

16.
YCF1 is a yeast vacuole membrane transporter involved in resistance to Cd(2+) and to exogenous glutathione S-conjugate precursors. MRP1 contributes to multidrug resistance (MDR) in tumor cells. MRP1 and YCF1 have extensive amino acid sequence homology (63% amino acid similarity). We expressed MRP1 or YCF1 in insect cell membranes and compared their functions to know more about their structure-function relationships. YCF1 and MRP1 with His epitopes were expressed in Sf21 insect cells; both of them in the plasma membrane. The ATP-dependent transport of [(3)H]LTC(4) in Sf/YCF1-His vesicles was osmotically sensitive and showed saturable kinetics with an apparent K(m) of 758 nM for LTC(4) and 94 microM for ATP which were similar to those in yeast cells. The K(m) of YCF1 for LTC(4) (758 nM) was sevenfold higher than that of MRP1 (108 nM). MK-571 and ONO-1078, reversing agents for MRP1-mediated MDR, considerably inhibited the transport of LTC(4) by both YCF1 and MRP1. However, PAK-104P, a pyridine analog that reverses MDR associated with P-gp and MRP1, inhibited the transporting activity of MRP1 stronger than that of YCF1. KE1, another MDR reversing agent, moderately inhibited the transport of LTC(4) by MRP1 but not that of YCF1. In conclusion, we successfully expressed yeast YCF1 in Sf21 insect cells and found that the localization of the protein was different from that in yeast. The function of YCF1 in Sf21 insect cells was similar but not identical to that of MRP1.  相似文献   

17.
Aromatic amino acid transport in Yersinia pestis.   总被引:2,自引:2,他引:0       下载免费PDF全文
The uptake and concentration of aromatic amino acids by Yersinia pestis TJW was investigated using endogenously metabolizing cells. Transport activity did not depend on either protein synthesis or exogenously added energy sources such as glucose. Aromatic amino acids remained as the free, unaltered amino acid in the pool fraction. Phenylalanine and tryptophan transport obeyed Michaelis-Menten-like kinetics with apparent Km values of 6 x 10(-7) to 7.5 x 10(-7) and 2 x 10(-6) M, respectively. Tyrosine transport showed biphasic concentration-dependent kinetics that indicated a diffusion-like process above external tyrosine concentrations of 2 x 10(-6) M. Transport of each aromatic amino acid showed different pH and temperature optima. The pH (7.5 TO8) and temperature (27 C) optima for phenylalanine transport were similar to those for growth. Transport of each aromatic amino acid was characterized by Q10 values of approximately 2. Cross inhibition and exchange experiments between the aromatic amino acids and selected aromatic amino acid analogues revealed the existence of three transport systems: (i) tryptophan specific, (ii) phenylalanine specific with limited transport activity for tyrosine and tryptophan, and (iii) general aromatic system with some specificity for tyrosine. Analogue studies also showed that the minimal stereo and structural features for phenylalanine recognition were: (i) the L isomer, (ii) intact alpha amino and carboxy group, and (iii) unsubstituted aromatic ring. Aromatic amino acid transport was differentially inhibited by various sulfhydryl blocking reagents and energy inhibitors. Phenylalanine and tyrosine transport was inhibited by 2,4-dinitrophenol, potassium cyanide, and sodium azide. Phenylalanine transport showed greater sensitivity to inhibition by sulfhydryl blocking reagents, particularly N-ethylmaleimide, than did tyrosine transport. Tryptophan transport was not inhibited by either sulfhydryl reagents or sodium azide. The results on the selective inhibition of aromatic amino acid transport provide additional evidence for multiple transport systems . These results further suggest both specific mechanisms for carrier-mediated active transport and coupling to metabolic energy.  相似文献   

18.
Kinetic measurement of the uptake of N-acetyl[4,5,6,7,8,9-14C]neuraminic acid by Escherichia coli K-235 was carried out in vivo at 37 degrees C in 0.1 M-Tris/maleate buffer, pH 7.0. Under these conditions uptake was linear for at least 30 min and the Km calculated for sialic acid was 30 microM. The transport system was osmotic-shock-sensitive and was strongly inhibited by uncouplers of oxidative phosphorylation [2,4-dinitrophenol (100%); NaN3 (66%]) and by the metabolic inhibitors KCN (84%) and sodium arsenate (76%). The thiol-containing compounds mercaptoethanol, glutathione, cysteine, dithiothreitol and cysteine had no significant effect on the sialic acid-transport rate, whereas the thiol-modifying reagents N-ethylmaleimide, iodoacetate and p-chloromercuribenzoate almost completely blocked (greater than 94%) the uptake of this N-acetyl-sugar. N-Acetylglucosamine inhibited non-competitively the transport of N-acetylneuraminic acid, whereas other carbohydrates (hexoses, pentoses, hexitols, hexuronic acids, disaccharides, trisaccharides) and N-acetyl-sugars or amino acid derivatives (N-acetylmannosamine, N-acetylcysteine, N-acetylproline and N-acetylglutamic acid) did not have any effect. Surprisingly, L-methionine and its non-sulphur analogue L-norleucine partially blocked the transport of this sugar (50%), whereas D-methionine, D-norleucine, several L-methionine derivatives (L-methionine methyl ester, L-methionine ethyl ester, L-methionine sulphoxide) and other amino acids did not affect sialic acid uptake. The N-acetylneuraminic acid-transport system is induced by sialic acid and is strictly regulated by the carbon source used for E. coli growth, arabinose, lactose, glucose, fructose and glucosamine being the carbohydrates that cause the greatest repressions in this system. Addition of cyclic AMP to the culture broth reversed the glucose effect, indicating that the N-acetylneuraminic acid-uptake system is under catabolic regulation. Protein synthesis is not needed for sialic acid transport.  相似文献   

19.
SYNOPSIS. Three-day-old cultures of Y and MR strains of Trypanosoma cruzi had a higher rate of lysine and arginine uptake than 10-day cultures. Amino acid uptake by cells of the MR strain was consistently higher than that of the Y strain. Flagellates separated on DEAE-cellulose columns have normal structure, motility, and infectivity; they have higher rates of lysine and arginine uptake than the original 3- and 10-day cultures. In addition, passage through DEAE-cellulose columns modified the kinetic behavior of amino acid transport systems in the flagellate membranes. Methionine inhibited uncompetitively uptake of lysine and arginine by MR and Y strains. Lysine inhibited arginine uptake by both strains by an uncompetitive mechanism. Lysine, however, inhibited the uptake of arginine by 10-day culture cells of the Y strain by a mixed-type of inhibition. Arginine also inhibited the lysine uptake of both strains by an uncompetitive mechanism. In all experiments, beyond a certain level, a further increase in inhibitor concentration resulted in a decreased inhibition, which eventually disappeared altogether. Inhibition of amino-acid uptake by any of the substances tested was not observed after passage of flagellates through a DEAE-cellulose column. A model for amino acid transport was formulated which includes a recognition site amenable to modulation by effectors.  相似文献   

20.
Cells of Zygosaccharomyces bailii ISA 1307 grown in a medium with acetic acid, ethanol, or glycerol as the sole carbon and energy source transported acetic acid by a saturable transport system. This system accepted propionic and formic acids but not lactic, sorbic, and benzoic acids. When the carbon source was glucose or fructose, the cells displayed activity of a mediated transport system specific for acetic acid, apparently not being able to recognize other monocarboxylic acids. In both types of cells, ethanol inhibited the transport of labelled acetic acid. The inhibition was noncompetitive, and the dependence of the maximum transport rate on the ethanol concentration was found to be exponential. These results reinforced the belief that, under the referenced growth conditions, the acid entered the cells mainly through a transporter protein. The simple diffusion of the undissociated acid appeared to contribute, with a relatively low weight, to the overall acid uptake. It was concluded that in Z. bailii, ethanol plays a protective role against the possible negative effects of acetic acid by inhibiting its transport and accumulation. Thus, the intracellular concentration of the acid could be maintained at levels lower than those expected if the acid entered the cells only by simple diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号