首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Improvement in H2 production was achieved through redirection of metabolic pathways by blocking formation of alcohol and some organic acids in Enterobacter cloacae IIT-BT 08. The wild type strain was more susceptible to allyl alcohol (7 mM) and to the combined effect of NaBr and NaBrO3 (40 mM each at pH 5.5) than were double mutants, with defects in both alcohol and organic acid formation pathways, which had higher H2 yields (3.4 mol mol–1 glucose) than the wild type strain (2.1 mol mol–1 glucose).  相似文献   

2.
Summary The formation of acetic acid by the thermophilic nonsporeforming homoacetogenic bacterium Acetogenium kivui was studied under various conditions. In pH-controlled batch fermentation at pH 6.4 this bacterium was able to produce up to 625 mM of acetic acid from glucose within 50–60 h. The value of max obtained was about 0.17 h-1, the yield was about 2.55 mol of acetic acid per mol of glucose utilized. In continuous fermentation both substrate concentration and dilution rate (D) influenced the yield of acetate and the stationary concentration: a glucose concentration of 67 mM at D=0.09 h-1 resulted in 2.82 mol acetate/mol glucose and 190 mM acetate at a production rate of 17.1 mM/1 h. When the dilution rate was increased the production rate reached a maximal value of 43.2 mM/1 h at D=0.32 h-1. At a glucose concentration of 195 mM the dependence of yield upon dilution rate followed a similar pattern and an acetate concentration of 420 mM could be obtained. Enzymatic studies indicate that in A. kivui pyruvate ferredoxin-oxidoreductase and acetate kinase are inhibited at acetate concentrations higher than 800 mM. Based on these results a fed-batch fermentation was developed, which allowed to produce more than 700 mM acetic acid within 40–50 h.Dedicated to Prof. Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

3.
Direct ammonium fumarate production from glucose-based media with Rhizopus arrhizus NRRL 1526 was obtained using 2-kmol (NH4)2CO3 per-m3 as neutralising agent and controlling mycelial growth by phosphorous (P) limitation. As the P level in the production medium was increased from 0 to 0.3-kg of KH2PO4 per m3, the fumarate yield decreased from 0.32 to 0.13-g per-g of glucose consumed; maximum ammonium fumarate productivity (0.46-kg-m–3-h–1) was obtained when using 0.1-kg phosphate-m–3.  相似文献   

4.
The hyperthermophilic bacterium, Thermotoga neapolitana, has potential for use in biological hydrogen (H2) production. The objectives of this study were to (1) determine the fermentation stoichiometry of Thermotoga neapolitana and examine H2 production at various growth temperatures, (2) investigate the effect of oxygen (O2) on H2 production, and (3) determine the cause of glucose consumption inhibition. Batch fermentation experiments were conducted at temperatures of 60, 65, 70, 77, and 85°C to determine product yield coefficients and volumetric productivity rates. Yield coefficients did not show significant changes with respect to growth temperature and the rate of H2 production reached maximum levels in both the 77°C and 85°C experiments. The fermentation stoichiometry for T. neapolitana at 85°C was 3.8 mol H2, 2 mol CO2, 1.8 mol acetate, and 0.1 mol lactate produced per mol of glucose consumed. Under microaerobic conditions H2 production did not increase when compared to anaerobic conditions, which supports other evidence in the literature that T. neapolitana does not produce H2 through microaerobic metabolism. Glucose consumption was inhibited by a decrease in pH. When pH was adjusted with buffer addition cultures completely consumed available glucose. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

5.
 The objective of this study was to assess fermentation product, growth rate and growth yield responses of Selenomonas ruminantium HD4 to limiting and non-limiting ammonia concentrations. The ammonia half-inhibition constant for S. ruminantium in batch culture was 296 mM. Cells were grown in continuous culture with a defined ascorbate-reduced basal medium containing either 0.5, 5, 25, 50, 100 or 200 mM NH4Cl and dilution rates were 0.07, 0.14, 0.24 or 0.40 h-1. Ammonia was the growth-limiting nutrient when 0.5 mM NH4Cl was provided and the half-saturation constant was 72 μM. Specific rates of glucose utilization and fermentation acid carbon formation were highest for 0.5 mM NH4Cl. Lactate production (moles per mole of glucose disappearing) increased at the fastest dilution rate (0.40 h-1) for 5.0 mM NH4Cl while acetate and propionate decreased when compared to slower dilutions (0.07 and 0.14 h-1). Lactate production remained low while acetate and propionate remained high for all dilution rates when NH4Cl concentrations were 25 mM or greater. Yield (Y Glc and Y ATP) were nearly doubled when NH4Cl was increased from 0.5 mM (25.1 g cells/mol glucose used and 13.9 g cells/mol ATP produced respectively) to the higher concentrations. Y Glc was highest at 25 mM and 50 mM NH4Cl (48.2 cells/mol and 43.1 cells/mol respectively) as was Y ATP (23.2 cells/mol and 20.8 cells/mol respectively). Y NH3 was highest at the lowest NH4Cl concentration. The maximal fermentation product formation rate occurred at a growth-limiting ammonia concentration, while maximal glucose and ATP bacterial yields occurred at non-growth-limiting ammonia concentrations. Given the growth response of this ruminal bacterium, it is possible that maximization of ruminal bacterial yield may necessitate sacrificing the substrate degradation rate and vice versa. Received: 5 December 1995/Received revision: 2 April 1996/Accepted: 22 April 1996  相似文献   

6.
The best culture medium composition for the production of bikaverin by Gibberella fujikuroi in shake-flasks, i.e. 100 g glucose l–1; 1 g NH4Cl l–1; 2 g rice flour l–1; 5 g KH2PO4 l–1 and 2.5 g MgSO4 l–1, was obtained through a fractional factorial design and then scaled-up to a fluidized bioreactor. The effects of carbon and nitrogen concentrations, inoculum size, aeration, flow rate and bead sizes on batch bikaverin production using immobilized G. fujikuroi in a fluidized bioreactor were determined by an orthogonal experimental design. Concentrations of up to 6.83 g bikaverin l–1 were obtained when the medium contained 100 g glucose l–1 and 1 g NH4Cl l–1 with an inoculum ratio of 10% v/v, an aeration rate of 3 volumes of air per volume of medium min–1, and a bead size of 3 mm. Based on dry weight, the bikaverin production was 30–100 times larger than found in submerged culture and approximately three times larger than reported for solid substrate fermentation.  相似文献   

7.
Hydrogen gas (60% H2) was produced in a continuous flow bioreactor inoculated with heat-treated soil, and fed synthetic wastewater containing glucose (9.5 g l–1). The pH in the bioreactor was maintained at 5.5 to inhibit consumption of H2 by methanogens. The objective of this study was to characterize bacterial communities in the reactor operated under two different hydraulic retention times (HRTs of 30-h and 10-h) and temperatures (30°C and 37°C). At 30-h HRT, the H2 production rate was 80 ml h–1 and yield was 0.91 mol H2/mol glucose. At 10-h HRT, the H2 production rate was more than 5 times higher at 436 ml h–1, and yield was 1.61 mol H2/mol glucose. Samples were removed from the reactor under steady-state conditions for PCR-based detection of bacterial populations by ribosomal intergenic spacer analysis (RISA). Populations detected at 30-h HRT were more diverse than at 10-h HRT and included representatives of Bacillaceae, Clostridiaceae, and Enterobacteriaceae. At 10-h HRT, only Clostridiaceae were detected. When the temperature of the 10-h HRT reactor was increased from 30°C to 37°C, the steady-state H2 production rate increased slightly to 463 ml h–1 and yield was 1.8 mol H2/mol glucose. Compared to 30°C, RISA fingerprints at 37°C from the 10-h HRT bioreactor exhibited a clear shift from populations related to Clostridium acidisoli (subcluster Ic) to populations related to Clostridium acetobutylicum (subcluster Ib).  相似文献   

8.
The effect of medium components (carbon, nitrogen, and mineral sources) and environmental factors (initial pH and temperature) for mycelial growth and exopolysaccharide (EPS) production in Sarcodon aspratus(Berk) S.lto TG-3 was investigated. The optimal temperature (25°C) and initial pH (5.0) for the EPS production in shake flask cultures of S. aspratus were determined using the two-dimensional contour plot. The most suitable carbon, nitrogen, and mineral sources for EPS production were glucose, yeast extract, CaCl2 and KH2PO4, respectively. Notably, the EPS production was significantly enhanced by supplementation of calcium ion. Subsequently, the optimum concentration of glucose (30gl–1), yeast extract (15gl–1), CaCl2 (1.1gl–1), and KH2PO4 (1.2gl–1) were determined using the orthogonal matrix method. The effects of nutritional requirement on the mycelial growth of S.aspratuswere in regular sequence of glucose>KH2PO4>yeast extract>CaCl2, and those on EPS production were in the order of glucose>yeast extract>CaCl2>KH2PO4. Under the optimal culture conditions, the maximum EPS concentration in a 5-l stirred-tank reactor was 2.68gl–1 after 4days of fermentation, which was 6-fold higher than that at a basal medium. The two-dimensional contour plot and orthogonal matrix method allowed us to find the relationship between environmental factors and nutritional requirement by determining optimal operating conditions for maximum EPS production in S.asparatus. The statistical experiments used in this work can be useful strategies for optimization of submerged culture processes for other mushrooms.  相似文献   

9.
Summary The continuous fermentation of mannitol (pH 6, dilution rate (D)=0.087 h-1) by Clostridium butyricum LMG 1213t1 was investigated under several conditions. Mannitol was readily fermented when glucose or acetate were added in the in-flow medium as co-substrate. Butyrate, CO2 and H2 were the major fermentation products. In mannitol-glucose mixtures (ratios 4 or 8) the amount of mannitol fermented depended upon the amount of glucose in the in-flow medium. In mannitol-acetate mixtures, 1 mol of acetate was needed for the fermentation of approximately 5.5 mol mannitol. We detected d-mannitol-1-phosphate dehydrogenase activity, responsible for the generation of supplementary reduced nicotine adenine dinucleotide (NADH) as a source for extra H2 gas. Fermentation of mannitol-acetate in the presence of [14C]-labelled acetate revealed butyrate as the only labelled fermentation end-product.  相似文献   

10.
The ruminal cellulolytic bacterium Fibrobacter succinogenes S85 was grown in cellulose-fed continuous culture at 22 different combinations of dilution rate (D, 0.014–0.076 h-1) and extracellular pH (6.11–6.84). Effects of pH and D on the fermentation were determined by subjecting data on cellulose consumption, cell yield, product yield (succinate, acetate, formate), and soluble sugar concentrationto response surface analysis. The extent of cellulose conversion decreased with increasing D. First-order rate constants at rapid growth rates were estimated as 0.07–0.11 h-1, and decreased with decreasing pH. Apparent decreases in the rate constant with increasing D was not due to inadequate mixing or preferential utilization of the more amorphous regions of the cellulose. Significant quantities of soluble sugars (0.04–0.18 g/l, primarily glucose) were detected in all cultures, suggesting that glucose uptake was rather inefficient. Cell yields (0.11–0.24 g cells/g cellulose consumed) increased with increasing D. Pirt plots of the predicted yield data were used to determined that maintenance coefficient (0.04–0.06 g cellulose/g cells · h) and true growth yield (0.23–0.25 g cells/g cellulose consumed) varied slightly with pH. Yields of succinate, the major fermentation endproduct, were as high as 1.15 mol/mol anhydroglucose fermented, and were slightly affected by dilution rate but were not affected by pH. Comparison of the fermentation data with that of other ruminal cellulolytic bacteria indicates that F. succinogenes S85 is capable of rapid hydrolysis of crystalline cellulose and efficient growth, despite a lower max on microcrystalline cellulose.  相似文献   

11.
Growth inhibition of Clostridium butyricum VPI 3266 by raw glycerol, obtained from the biodiesel production process, was evaluated. C. butyricum presents the same tolerance to raw and to commercial glycerol, when both are of similar grade, i.e. above 87% (w/v). A 39% increase of growth inhibition was observed in the presence of 100 g l–1 of a lower grade raw glycerol (65% w/v). Furthermore, 1,3-propanediol production from two raw glycerol types (65% w/v and 92% w/v), without any prior purification, was observed in batch and continuous cultures, on a synthetic medium. No significant differences were found in C. butyricum fermentation patterns on raw and commercial glycerol as the sole carbon source. In every case, 1,3-propanediol yield was around 0.60 mol/mol glycerol consumed.  相似文献   

12.
Summary The fermentation of cellobiose, glucose and cellulose MN 300 by Cellulomonas fermentans was studied. The molar growth yields (i.e. grams of cells per mole of hexose equivalent) were similar on cellobiose and cellulose at low sugar consumption levels (47.8 and 46.5 respectively), but was lower on glucose (38.0). The occurrence of cellobiose phosphorylase activity, detected in cellobiose- and cellulose-grown cells, might explain this result. The specific growth rates measured in cultures on cellobiose, glucose and cellulose were 0.055 h-1, 0.040 h-1 and 0.013 h-1 respectively. Growth inhibition was observed, and a drop in YH occurred after relatively low but different quantities of hexose were consumed (2.2 mM, 5 mM and 8 mM hexose equivalent with cellulose, glucose and cellobiose respectively), which coincided with a change in the fermentative metabolism from a typical mixed acid metabolism (1 ethanol, 1 acetate and 2 formate synthesized by consumed hexose) to a more ethanolic fermentation. When growth ceased in cellulose cultures, consumption of cellulose continued, as did production of ethanol.Molar growth yields of C. fermentans were similar in anaerobic and aerobic cellobiose cultures (47.8 g/mol and 42.2 g/mol respectively). Specific growth rates were also quite similar under both culture conditions (0.055±0.013 h-1 and 0.070±0.007 h-1 respectively). Aerobic metabolism was studied using 14C glucose. During the exponential growth phase, acetate, succinate and nonidentified compound(s) accumulated in the supernatant, but no 14CO2 was produced. During the stationary phase, acetate was oxidized and 14CO2 produced, but without any further biomass synthesis. It seems that a blocking of metabolite oxidation may have occurred in C. fermentans except in the case of acetate, but acetate oxidation was apparently not coupled with production of energy utilizable in biosynthesis.  相似文献   

13.
Carob (Ceratonia siliqua L.) has compound pinnate leaves consisting of 4 – 6 pairs of leaflets. However, in conditions of in vitro culture only one pair of leaflets develops. With increasing irradiance from 9.3 to 74.1 µmol m–2 s–1, leaf area increased 5-fold. Sucrose also significantly increased leaf area and the maxima were at concentration 147 mM at high irradiance and 233.6 mM at low irradiance. Sucrose was superior to fructose, glucose and combination of both in increasing leaf area. Decreasing concentration of KNO3 and NH4NO3 caused a 3-fold decline of leaf area.  相似文献   

14.
Sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice cover of 190 days per year. In situ, transparent and dark flux chambers were used for direct measurements of benthic fluxes of dissolved oxygen, nutrients, silica and certain metals, taking into account primary production and mineral precipitation. The range of benthic flux observed for dissolved oxygen (DO), dissolved inorganic carbon (DIC), ammonium, ortho-P, silica, calcium, and magnesium was –45.89 to 187.03, –99.32 to 50.96, –1.30 to 1.27, –0.51 to 0.39, –62.3 to 9.3, –33.82 to 16.83, and –23.93 to 7.52 mmol m–2 d–1, respectively (negative value indicating flux towards the lake bottom). Low benthic NH4 + and ortho-P fluxes were likely related to benthic algal production, and aerobic bottom water. Ortho-P fluxes could also be controlled by the dissolution/precipitation of ferrihydrite, calcite, and perhaps hydroxyapatite. The negative silica fluxes were caused by diatom frustule synthesis. Benthic calcium and magnesium fluxes could be related to algal production and dissolution/precipitation of calcium and/or Ca,Mg-carbonates. Fluxes of DO, DIC, pH and alkalinity were related to benthic biological processes. It is likely that some of the carbon precipitates as calcite at the high pH in the summer and dissolves at neutral pH in the winter. Mean of the ratio of gross benthic DIC consumption and gross benthic DO production was 0.94 ± 0.18, consistent with algal production using NH4 + as N source. During the summer weeks the water column pH remains above 10. This high pH is caused by direct and indirect utilisation of CO2, HCO3 , CO3 –2, H4SiO4 ° and H3SiO4 by primary producers. This study shows that in shallow lakes at high latitudes, where summer days are long and the primary production is mostly by diatoms, the pH is forced to very high values. The high pH could lead to a positive feedback for the Si flux, but negative feedback for the NH4 + flux.  相似文献   

15.
Summary Deficiency of inorganic phosphate caused the hyper production of invertase and the derepression of acid phosphatase in a continuous culture ofSaccharomyces carlsbergensis. The specific invertase activity was 40,000 enzyme units per g dry cell weight at a dilution rate lower than 0.05 h–1 with a synthetic glucose medium of which the molecular ratio of KH2PO4 to glucose was less than 0.006. This activity is eight fold higher than in a batch growth and 1.5 fold as much as the highest enzyme activity observed so far in a glucose-limited continuous culture.For the hyper production of invertase, it is necessary to culture the yeast continuously by keeping the Nyholm's conservative inorganic phosphate concentration at less than 0.2 m mole per g dry weight cell. The derepression of acid phosphatase brought about by phosphate deficiency, was similar in both batch and continuous cultures.Nomenclature D dilution rate of continuous culture (h–1) - Ei invertase concentration in culture (enzyme unit l–1) - Ep acid phosphatase concentration in culture (enzyme unit l–1) - P inorganic phosphate concentration in culture (mM) - S glucose concentration in culture (mM) - X cell concentration in culture (g dry weight cell l–1) Greek Letter specific rate of growth (h–1) Suffix f feed - 0 initial value  相似文献   

16.
The growth and photosynthetic responses ofPterocladiella capillaceato NH4, PO4, CO2-enrichment, pH, irradiance and temperature were evaluated for winter or summer plants cultivated under laboratory and outdoor settings. In the laboratory, using a gradient table, optimal growth temperature and irradiance for winter plants occurred at 10–20 °C and 100 mol photon m–2s–1, averaging 24.3% per week. The optimal growth conditions found for summer plants were 10–20 °C and 20 mol photon m–2s–1, averaging 29.0% per week. In a pH-stat cultivation system photosynthetic rates and growth rates were largely unaffected by pH in the range 6.5–8.5, however, they both decreased significantly above 8.5. In outdoor settings, using 40 L tanks,P. capillaceawas more responsive to the frequency the algae were fed with NH4and PO4rather than the relative concentrations of these nutrients. The average growth rates during winter were 28.3% and 12.5% per week when NH4and PO4were included once and twice a week for 24-h periods, respectively, while summer plants grew 15.0% and 25.3% per week at these nutrient regimes. Algae grown in seawater (containing 13.8 ± 1.8 M CO2) or CO2-enriched seawater (averaging 33.7 ± 13.2 M CO2) had similar growth rates or even reduced productivity under CO2-enrichment during winter. Concentrations of chlorophyllawere in average significantly higher in winter as compared to summer especially when nutrients were included twice a week. Phycoerythrin levels were also higher for plants fed with nutrients twice a week particularly during summer time. Although agar yields were limited and not seasonally dependent, this study shows high growth capacity forP. capillaceaas compared to previous investigations. Future mariculture prospective using current tank cultivation techniques for this species will likely depend on market demands for high quality agar.  相似文献   

17.
The effects of acetate and butyrate during glycerol fermentation to 1,3-propanediol at pH 7.0 by Clostridium butyricum CNCM 1211 were studied. At pH 7.0, the calculated quantities of undissociated acetic and butyric acids were insufficient to inhibit bacterial growth. The initial addition of acetate or butyrate at concentrations of 2.5 to 15 gL−1 had distinct effects on the metabolism and growth of Clostridium butyricum. Acetate increased the biomass and butyrate production, reducing the lag time and 1,3-propanediol production. In contrast, the addition of butyrate induced an increase in 1,3-propanediol production (yield: 0.75 mol/mol glycerol, versus 0.68 mol/mol in the butyrate-free culture), and reduced the biomass and butyrate production. It was calculated that reduction of butyrate production could provide sufficient NADH to increase 1,3-propanediol production. The effects of acetate and butyrate highlight the metabolic flexibility of Cl. butyricum CNCM 1211 during glycerol fermentation. Received: 2 January 2001 / Accepted: 6 February 2001  相似文献   

18.
Using experimental data from continuous cultures of Clostridium acetobutylicum with and without biomass recycle, relationships between product formation, growth and energetic parameters were explored, developed and tested. For glucose-limited cultures the maintenance models for, the Y ATP and biomass yield on glucose, and were found valid, as well as the following relationships between the butanol (Y B/G) or butyrate (Y BE/G) yields and the ATP ratio (R ATP, an energetic parameter), Y B/G =0.82-1.35 R ATP, Y BE/G =0.54 + 1.90 R ATP. For non-glucose-limited cultures the following correlations were developed, Y B/G =0.57-1.07 , Y B/G =0.82-1.35 R ATPATP and similar equations for the ethanol yield. All these expressions are valid with and without biomass recycle, and independently of glucose feed or residual concentrations, biomass and product concentrations. The practical significance of these expressions is also discussed.List of Symbols D h–1 dilution rate - m e mol g–1 h–1 maintenance energy coefficient - m G mol g–1 h–1 maintenance energy coefficient - R biomass recycle ratio, (dimensionless) - R ATP ATP ratio (eqs.(5), (10) and (11)), (dimensionless) - X kg/m3 biomass concentration - Y ATP g biomass per mol ATP biomass yield on ATP - Y ATP max g biomass per mol ATP maximum Y ATP - Y A/G mol acetate produced per mol glucose consumed molar yield of acetate - y an/g mol acetone produced per mol glucose consumed molar yield of acetone - Y B/G mol butanol produced per mol glucose consumed molar yield of butanol - y be/g mol butyrate produced per mol glucose consumed molar yield of butyrate - Y E/G mol ethanol produced per mol glucose consumed molar yield of ethanol - Y X/G g biomass per mol glucose consumed biomass yield on glucose - Y ATP max g biomass per mol maximum Y X/G glucose consumed - h–1 specific growth rate  相似文献   

19.
Summary The effect of product gases, H2 and CO2, on solvent production was studied using a continuous culture of alginate-immobilized Clostridium acetobutylicum. Initially, in order to find the optimum dilution rate for aceton--butanol production in this system, fermentations were carried out at various dilution rates. With 10% H2 and 10% CO2 in the sparging gas, a dilution rate of 0.07 h–1 was found to maximize volumetric productivity (0.58 g·l–1·h–1), while the maximum specific productivity of 0.27 g·h–1 occured at 0.12 h–1. Continuous cultures with vigorous sparging of N2 produced only acids. It was concluded that in the case of continuous fermentation H2 is essential for good solvent production, although good solvent production is possible in an H2-absent environment in the case of batch fermentations. When the fermentation was carried out at atmospheric pressure under H2-enriched conditions, the presence of CO2 in the sparging gas did not slow down glucose metabolism; rather it changed the direction of the phosphoroclastic reaction and as a result increased the butanol/acetone ratio.  相似文献   

20.
The hyperthermophilic anaerobe Pyrococcus furiosus was found to grow on pyruvate as energy and carbon source. Growth was dependent on yeast extract (0.1%). The organism grew with doublings times of about 1 h up to cell densities of 1–2×108 cells/ml. During growth 0.6–0.8 mol acetate and 1.2–1.5 mol CO2 and 0.8 mol H2 were formed per mol of pyruvate consumed. The molar growth yield was 10–11 g cells(dry weight)/mol pyruvate. Cell suspensions catalyzed the conversion of 1 mol of pyruvate to 0.6–0.8 mol acetate, 1.2–1.5 mol CO2, 1.2 mol H2 and 0.03 mol acetoin. After fermentation of [3-14C]pyruvate the specific radioactivities of pyruvate, CO2 and acetate were equal to 1:0.01:1. Cellfree extracts contained the following enzymatic activities: pyruvate: ferredoxin (methyl viologen) oxidoreductase (0.2 U mg-1, T=60°C, with Clostridium pasteurianum ferredoxin as electron acceptor; 1.4 U mg-1 at 90°C, with methyl viologen as electron acceptor); acetyl-CoA synthetase (ADP forming) [acetyl-CoA+ADP+Piacetate+ATP+CoA] (0.34 U mg-1, T=90°C), and hydrogen: methyl viologen oxidoreductase (1.75 U mg-1). Phosphate acetyl-transferase activity, acetate kinase activity, and carbon monoxide:methyl viologen oxidoreductase activity could not be detected. These findings indicate that the archaebacterium P. furiosus ferments pyruvate to acetate, CO2 and H2 involving only three enzymes, a pyruvate:ferredoxin oxidoreductase, a hydrogenase and an acetyl-CoA synthetase (ADP forming).Non-standard abbreviations DTE dithioerythritol - MV methyl viologen - MOPS morpholinopropane sulfonic acid - Tricine N-tris(hydroxymethyl)-methylglycine Part of the work was performed at the Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karlvon-Frisch-Strasse, W-3550 Marburg/Lahn, Federal Republic of Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号