首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nucleic acid hybridization: from research tool to routine diagnostic method   总被引:2,自引:0,他引:2  
The nucleic acid hybridization reaction is extremely specific and thus a valuable tool for the identification of genes or organism of interest. The increasing use of nucleic acid hybridization in applied fields like diagnostic medicine has led to the development of more convenient hybridization assays than those originally used in basic research. In conventional nucleic acid hybridization methods immobilized nucleic acids are detected on a filter by a radiolabelled probe. Sandwich hybridization is a simple test format for the analysis of unpurified biological material, but has the disadvantage of a slow reaction rate. Solution hybridization methods are fast and easy to perform provided that a method to separate the formed hybrids from the reaction mixture is available. In non-isotopic detection the nucleic acid probe is modified with a chemical group, which is identified with a labelled detector molecule after hybridization. The low sensitivity of detection is the main problem in nucleic acid hybridization methods. Procedures to amplify the detectable signal or the amount of detectable nucleic acid sequences are potential solutions to this problem. The new hybridization methods have successfully been used for some applications, but still need to be combined into well performing tests to be applicable to any desired purpose.  相似文献   

3.
4.
Nucleic acid crystallography: current progress   总被引:1,自引:0,他引:1  
Fifty years after the publication of the DNA double helix model by Watson and Crick, new nucleic acid structures keep emerging at an ever-increasing rate. The past three years have brought a flurry of new oligonucleotide structures, including those of a Hoogsteen-paired DNA duplex, Holliday junctions, DNA-drug complexes, quadruplexes, a host of RNA motifs and various nucleic acid analogues. Major advances were also made in terms of the structure and function of catalytic RNAs. These range from improved models of the phosphodiester cleavage reactions catalyzed by the hairpin and hepatitis delta virus ribozymes to the visualization of a complete active site of a group I self-splicing intron with bound 5'- and 3'-exons. These triumphs are complemented by a refined understanding of cation-nucleic-acid interactions and new routes to the generation of derivatives for phasing of DNA and RNA structures.  相似文献   

5.
6.
7.
8.
Since the discovery of the first natural ribozyme more than 20 years ago, it has become clear that nucleic acids are not only the static depository of genetic information, but also possess intriguing catalytic activity. The number of reactions catalyzed by engineered nucleic acid enzymes is growing continuously. The versatility of these catalysts supports the idea of an ancestral world based on RNA predating the emergence of proteins, and also drives many studies towards practical applications for nucleic acid enzymes.  相似文献   

9.
10.
Hydrogen bonding contributes of the order of 5–15 kcal/mol base pair to the stability of the helix (electronic or intrinsic energy). This contribution is selective, i.e., there is a preferential stability of the Watson-Crick G-C pair relative to all other pairs. Stacking interactions contribute approximately of the same order as hydrogen bonding. Perhaps the most interesting aspect of the stacking interactions which emerges from the theoretical analysis is the fact that the stacking maxima are not necessarily at the angles the successive base pair plans assume in a regular double helix. Consequently some sequence dependent structure peculiarities may arise. That is, the double helix may have a fine structure contingent on the sequence of base pairs. Indeed such sequence dependent polymorphism has been reported in the recent literature and appears to influence the ability of aromatic drugs to intercalate into the helix. The solvent effect which is another factor of stability seems to decrease somewhat bonding scheme preferences. For example, in the model we used to estimate solvent effect, we find that the G-C pair formation is de-stabilized strongly in water, while the A-T pair formation is mildly enhanced. The continuum model of solvent effect leads to similar qualitative conclusions. Studies of backbone conformation indicate that only a limited range of conformational states are comparable with the helical configuration. Improved empirical methods are needed in order to successfully calculate backbone effects for relatively large segments of nucleic acids.  相似文献   

11.
12.
Nucleic acid molecular switches   总被引:8,自引:0,他引:8  
Natural and artificial ribozymes can catalyse a diverse range of chemical reactions. Through recent efforts in enzyme engineering, it has become possible to tailor the activity of ribozymes to respond allosterically to specific effector compounds. These allosteric ribozymes function as effector-dependent molecular switches that could find application as novel genetic-control elements, biosensor components or precision switches for use in nanotechnology.  相似文献   

13.
14.
The study of a heat-shock process for RNA reduction was carried out for different yeast strains. Different results were obtained from each of them. Candida utilis NRRL Y-660 shows its best performance after a 8-s. heat-shock in the presence of 3% NaCl. For commercial baker's yeast Saccharomyces cerevisiae and Kluyveromyces fragilis L-1930, similar results were obtained with only 1% of NaCl. The latter needed longer heat-shock periods. e.g. 15s. to give such an RNA reduction. Biomass recovery ranged from 60 to 75%, being higher for C. utilis and K. fragilis while excessive losses were observed in S. cerevisiae cells. No significant protein deterioration was obtained in the best performance samples. The aminoacid profile appears to be improved in comparison to the starting material in these strains after RNA reduction.  相似文献   

15.
Last year provided new structural data, particularly for the group I intron and the Hepatitis delta ribozymes, that were essential for a better understanding of the RNA structure/function relationship. The role of metal ions in catalysis of ribozyme action still remains elusive, however. In vitro selection has continued to be a rich source for obtaining data on new nucleic acid enzyme activities.  相似文献   

16.
17.
18.
19.
20.
We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号