首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Summary Chromosomal rearrangements, uniformly represented by very large deletions, were stimulated upon transiently exposing Escherichia coli cells with a defective lambda prophage to about 18% (v/v) ethanol. It was shown that the ethanol treatment induced deletion formation rather than enriching for ethanol-tolerant cells. The deletions in 435 mutants were mapped to 26 groups. Ethanol treatment changed the spectrum of deletions relative to those arising spontaneously, and stimulated the formation of deletions with endpoints in E. coli DNA flanking the lambda fragment. The promotion of deletion formation by ethanol involves the joining of distant, nonhomologous linear DNA segments, which can be considered an illegitimate recombination event; however, activity of the E. coli recA gene product was also required. Although spontaneous deletions arose in comparable cells defective for recA, the incidence of deletion formation in recA cells was not altered by ethanol. It is proposed that ethanol stimulates chromosomal rearrangements involving two oppositely oriented replication forks, since the localized deletions commonly removed or inactivated the chromosomal segment including the bidirectional lambda origin of replication. The results imply a novel mutagenic process induced by an agent that does not act directly on DNA.  相似文献   

2.
Structure of cryptic lambda prophages   总被引:9,自引:0,他引:9  
When Escherichia coli cells lysogenic for bacteriophage lambda are induced with ultraviolet light, cells carrying cryptic lambda prophages are occasionally found among the apparently cured survivors. The lambda variant crypticogen (lambda crg) carries an insertion of the transposable element IS2, which increases the frequency of cryptic lysogens to about 50% of cured cells: 43 of these cryptic prophages have been characterized. They all contain substitutions that replace the early segment of the prophage genome (from the IS2 to near the cos site) with a duplicate copy of a large segment of the host chromosome. The right end of the substitution always results from recombination between the nin-QSR-cos region of the prophage and the homologous incomplete lambdoid prophage Qsr' at 12.5 minutes in the E. coli chromosome. The left end of the substitution is usually a crossover that recombines the IS2 element in the prophage with an E. coli IS2 at 8.5 minutes, near the lac gene, or with a second IS2 located counterclockwise from leu at 2 minutes, generating duplications of at least 200,000 bases. Five cryptic lysogens derived from cells lysogenic for a reference strain of lambda (which lacks the IS2 present in lambda crg) have been characterized. They contain substitutions whose right termini are generated by a crossover with the Qsr' prophage. The left termini of these substitutions are formed either by a crossover between the lambda exo gene and a short exo-homologous segment of Qsr' (2/5), or by a crossover between sequences to the left of attL and an unmapped distant region of the host chromosome (3/5). The large duplications carried by these cryptic lysogens are stable, unlike tandem duplications, and so may significantly influence the cell's evolutionary potential.  相似文献   

3.
H Fujita 《Mutation research》1985,158(3):135-139
Photoinduced genotoxicity of benzothiadiazine diuretics was studied with regard to mutagenic and lambda prophage-inducing activities in E. coli. Irradiation of E. coli with near-ultraviolet light in the presence of hydrochlorothiazide or methyclothiazide caused mutations of strain Hs30R argF(Am) to the prototrophic phenotype and induction of lambda from the lysogenic bacteria AB1157(lambda). Both drugs showed nearly the same amount of activity. Penfluzide showed much less mutagenic and much less prophage-inducing activity than did hydrochlorothiazide and methyclothiazide.  相似文献   

4.
Freshly brewed blended coffee, instant coffee and instant caffeine-free coffee induced prophage lambda in lysogenic E. coli K12, strain GY5027. Because coffee prepared from green beans by the same extraction method as used for freshly brewed blended coffee had no prophage-inducing activity, this activity may be attributed to compounds produced in the roasting process. Roasting also produced compounds that were mutagenic in S. typhimurium TA100 and E. coli WP2 uvrA/pKM101.  相似文献   

5.
Prophage induction and mutation by alkylaminosulfonates, ethyl aminosulfonate and alkyl methanesulfonates were examined comparatively. Prophage induction was carried out with a lysozyme lysis technique on the lysogenic strain Micrococcus lysodeikticus 53-40 (N5). The sulfonic ester derivatives show a slight lysogenic induction. At higher concentrations their toxicity seems to mask phage detection. Only methyl isopropylaminosulfonate and ethyl aminosulfonate exhibit no or negligible toxic effects, and with these compounds at higher concentrations a strong prophage induction is found. Alkyl sulfonate derivatives induce mutations in the tester strain of Salmonella typhimurium TA1535. Methyl methylaminosulfonate and ethyl N-methyl-N-2-chloroethyl aminosulfonate show a mutagenicity comparable to that of the well-known methyl methanesulfonate or ethyl methanesulfonate. With ethyl aminosulfonate, however, which does not show inactivation, no significant mutagenic effect was observed. DNA alterations were found in the polymerase-deficient strain E. coli P3478. The results of prophage induction and mutagenicity are compared and discussed.  相似文献   

6.
Plasmid-based cloning and expression of genes in Escherichia coli can have several problems: plasmid destabilization; toxicity of gene products; inability to achieve complete repression of gene expression; non-physiological overexpression of the cloned gene; titration of regulatory proteins; and the requirement for antibiotic selection. We describe a simple system for cloning and expression of genes in single copy in the E. coli chromosome, using a non-antibiotic selection for transgene insertion. The transgene is inserted into a vector containing homology to the chromosomal region flanking the attachment site for phage lambda. This vector is then linearized and introduced into a recombination-proficient E. coli strain carrying a temperature-sensitive lambda prophage. Selection for replacement of the prophage with the transgene is performed at high temperature. Once in the chromosome, transgenes can be moved into other lysogenic E. coli strains using standard phage-mediated transduction techniques, selecting against a resident prophage. Additional vector constructs provide an arabinose-inducible promoter (P(BAD)), P(BAD) plus a translation-initiation sequence, and optional chloramphenicol-, tetracycline-, or kanamycin-resistance cassettes. These Transgenic E. coli Vectors (TGV) allow drug-free, single-copy expression of genes from the E. coli chromosome, and are useful for genetic studies of gene function.  相似文献   

7.
The lethal and mutagenic effects of 7 alkylating agents: N-nitroso-N-methylurea (NMU), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), nitrogen mustard (HN2), mitomycin C (MC), bifunctional acridine mustard (AM)--and of cyanate (KNCO) on heat inducible lambda cI857 prophage were studied. After treatment of lysogenic cells with mutagens, prophage was heat-induced either immediately or after 90 min incubation in nutrient broth and c mutants forming clear plaques at 32 degrees C were scored. NMU (0.02 M) when immediately induced with heat, induces c mutants very efficiently (maximal yield 10%) not only in the wild-type cells but also in repair-deficient mutants recA13, lexA102, uvrA6 umuC36, recF143, xthA9, polA1, uvrD3 and uvrD502. These data show that NMU-induced mutations are fixed as replication errors due to mispairing modified bases. After delayed heat induction, the prophage survival enhances and the frequency of c mutations declines considerably in host cells of all repair genotypes tested. Carbamoylation is not involved in the mutagenic action of NMU, because KNCO (0.02 M) has a very slight lethal effect and does not induce mutations. MNNG (100 micrograms/ml) and EMS (0.1 M) also induce mutations by replicative mechanism, because maximal yield of c mutations does not depend on RecA+ and is about 15 and 2%, respectively. MMS is a mutagen of the repair type, since its mutagenic action is suppressed by recA mutation of the host. NH2 only inactivates prophage, but does not induce mutations. MC (50 micrograms/ml) and AM (150 micrograms/ml) induce mutations rather inefficiently (the maximal yield 0.1 and 0.3%, respectively) both in recA+ and recA- hosts. The mutagenic action of these agents is probably due to intercalation.  相似文献   

8.
9.
Lisio, Arnold L. (National Institutes of Health, Bethesda, Md.), and Arthur Weissbach. Repression of lambda-associated enzyme synthesis after lambda(vir) superinfection of lysogenic hosts. J. Bacteriol. 90:661-666. 1965.-Phage lambda(vir) is a multiple mutant of lambda which is capable of overcoming the immunity of a host lysogenic for lambda, and initiating normal vegetative replication of the superinfecting phage genome. Superinfection of Escherichia coli K-112 (lambda(22)) with lambda(vir) results in a normal phage yield, lysis time, and H(3)-thymine incorporation compared with infection of the sensitive host, K-112 (S). However, the production of the lambda phage-specific early protein, lambda-exonuclease, after superinfection of E. coli K-112 (lambda(22)) with lambda(vir) is only 25 to 50% of that obtained from corresponding infection of a nonlysogenic host, E. coli K-112 (S). This repression of lambda-exonuclease synthesis is dependent on the C(1) cistron of the prophage and is overcome if the lysogenic host cells are induced prior to superinfection. The data are interpreted as evidence for partial repression of lambda(vir) by the host immunity.  相似文献   

10.
We present the detailed research on the previously described Escherichia coli K-12 Mud- mutants with impaired development of bacteriophage Mu. The ability of Mu phage DNA to penetrate into mutant cells on infection was shown. If introduced into the cells or combined with mud mutation by recombination, the prophage may be induced, which results in phage Mu lythic development and phage burst from mutant cells. In the course of conjugative transfer into the mutant cells, within a DNA fragment of the lysogenic donor chromosome, MupAp1 prophage is not inherited by recombinants. At the same time, Mu prophage deficient in genes A and B, whose products are required for transposition, is inherited by the mutant with the usual frequency. These data enable us to conclude that the mud mutations disturb the stage of conservative transposition which is connected with the insertion of the Mu prophage into the chromosome, after excision from the linear DNA introduced into the cells via infection or conjugation.  相似文献   

11.
When bacteriophage T1 was grown on bacteriophage lambda-lysogenic cells, phenotypically mixed particles were formed which had the serum sensitivity, host range, and density of T1 but which gave rise to lambda phage. T1 packaged lambda genomes more efficiently both when the length of the prophage was less than that of wild-type lambda and when the host cell was polylysogenic. Expression of the red genes of lambda or the recE system of Escherichia coli during T1 growth enhanced pickup of lambda by T1, whereas packaging was reduced in recB cells. If donors were singly lysogenic, the expression of transduced lambda genomes as a PFU required lambda-specified excisive recombination, whereas lambda genomes transduced from polylysogens required only lambda- or E. coli-specified general recombination to give a productive infection.  相似文献   

12.
A study was made of the influence of the repair genotype on lambda prophage induction by ionizing radiation of different LET in lysogenic E. coli cells. Bacterial strains W3110, P3478, GC244, and 30SO were exposed to gamma-rays and helium ions of 22 keV/microns. Induction of the prophage in GC244 and 30SO strains deficient by lexA and recA genes was either inhibited (GC244) or lacking (30SO). Inducibility of P3478 carrying polA mutation was 12 and 5 times as high as that of the wild type strain after exposure to gamma-radiation and helium ions, respectively.  相似文献   

13.
Studies on the genotoxicity of endosulfan in bacterial systems   总被引:15,自引:0,他引:15  
Endosulfan, an organochlorine pesticide, was subjected to the differential sensitivity assay in repair-deficient and repair-proficient strains of Escherichia coli K12, prophage lambda induction assay in WP2s (lambda) and mutation induction in E. coli K12. The induction of umu gene expression with endosulfan was studied also in Salmonella typhimurium TA1535/pSK1002 cells. The differential sensitivity assay revealed that the recA 13 strain was the most sensitive. Endosulfan induced prophage lambda in E. coli and umu gene expression in S. typhimurium cells; however, the extent of the effects were low. Endosulfan also induced a dose-dependent increase in forward mutations in E. coli K12 cells from ampicillin sensitivity to ampicillin resistance. Our studies indicate the genotoxic potential of endosulfan and the role of the recA gene in the repair of endosulfan-induced DNA damage.  相似文献   

14.
15.
Salmonella typhosa hybrids able to adsorb lambda were obtained by mating S. typhosa recipients with Escherichia coli K-12 donors. After adsorption of wild-type lambda to these S. typhosa hybrids, no plaques or infective centers could be detected. E. coli K-12 gal(+) genes carried by the defective phage lambdadg were transduced to S. typhosa hybrids with HFT lysates derived from E. coli heterogenotes. The lysogenic state which resulted in the S. typhosa hybrids after gal(+) transduction differed from that of E. coli. Ability to produce lambda, initially present, was permanently segregated by transductants of the S. typhosa hybrid. S. typhosa lysogens did not lyse upon treatment for phage induction with mitomycin C, ultraviolet light, or heat in the case of thermoinducible lambda. A further difference in the behavior of lambda in Salmonella hybrids was the absence of zygotic induction of the prophage when transferred from E. coli K-12 donors to S. typhosa. A new lambda mutant class, capable of forming plaques on S. typhosa hybrids refractory to wild-type lambda, was isolated at low frequency by plating lambda on S. typhosa hybrid WR4254. Such mutants have been designated as lambdasx, and a mutant allele of lambdasx was located between the P and Q genes of the lambda chromosome. Plaques were formed also on the S. typhosa hybrid host with a series of lambda(i21) hybrid phages which contain the N gene of phage 21. The significance of these results in terms of Salmonella species as hosts for lambda is discussed.  相似文献   

16.
Infection of nonlysogenic Escherichia coli CR34(S) (Thy(-)) with bacteriophage lambda C(I)857 resulted in the formation of twisted circular double-stranded phage deoxyribonucleic acid (DNA; species I). When such infected bacteria were incubated in the absence of thymine, there was a significant decrease in the amount of species I DNA after 60 min of incubation. A similar loss of species I lambda DNA during incubation in a thymine-deficient medium was also observed after infection of the endonuclease I-deficient strain, E. coli 1100(S) (Thy(-)). This destruction of twisted, circular lambda DNA in thymine-deprived cells did not occur in the presence of chloramphenicol nor in lysogenic E. coli CR34 carrying a noninducible lambda prophage. It is therefore concluded that the endonuclease which attacks this circular configuration of lambda DNA is newly synthesized after infection and is directed by the phage chromosome.  相似文献   

17.
The lethal and mutagenic effects of nitrous acid (0,1 M NaNO2 in 0,1 M acetate buffer, pH 4.6) on prophage lambda cI857 ind- were studied in the wild-type cells of Escherichia coli and in 9 repair-deficient mutants: uvrA6, uvrA6 umuC36, uvrD3, uvrE502, polA1, recA13, lexA102, recF143 and xthA9. After treatment with HNO2, the prophage was heat-induced either immediately or after 90 min incubation in broth at 32 degrees C. The prophage survival after delayed induction was considerably higher than after immediate induction. The lethal action of HNO2 was highly expressed in uvrA- and uvrE- lysogens after delayed induction. The frequency of temperature-independent c mutants forming clear plaques at 32 degrees C reached 4% in the wild-type host after immediate induction, this value being 10-15% in uvrA, uvrA umuC, uvrD, uvrE, polA and xthA mutants, 0,8% in recF- lysogen and only 0,2-0,3% in recA and lexA mutants. Under these conditions, about 90% of c mutants are generated by recA+, lexA+-dependent repair mechanism (most probably, due to W-mutagenesis). After delayed induction, mutation frequency in the wild-type host declines considerably (down to 0,1%). Analogous phenomenon of mutation frequency decline was registered in uvrA, xthA, recF, polA, uvrE and uvrD lysogens. Under conditions of delayed induction, the frequency of HNO2-induced c mutations only slightly depends on the recA+ and lexA+ gene products and mutations are, apparently, fixed by replication.  相似文献   

18.
PABA - Vitamin H1 of group B, has obtained increasing fundamental interest as a very potent natural antimutagen after a series of our publications since 1979. In the first set of our experiments, we studied PABA in the assays with the alkylating agent N-methyl-N-nitrosourea (MNU). Mutagenic efficiency of this agent was suppressed up to 10-fold when PABA was administered into Escherichia coli cells concurrently with the mutagen or prior to the mutagenic treatment. NMR spectrometric and UV-spectrophotometric measurements did not reveal an interaction between the direct acting MNU and PABA, typical for some N-nitroso compounds and phenolics. PABA suppressed the error-prone DNA repair pathway induced by UV-irradiation. PABA decreased MNU-induced phage lambda lysogenic induction more than two orders of magnitude. PABA inhibited the thermal shift up to 400-fold in phage lambda from the permissive to non-permissive temperature in E. coli mutant tif-1 and decreased about two-fold W-reactivation of UV-damaged phage lambda. Chloramphenicol treatment of the cells just after the mutagenic treatment prevented the occurrence of PABA specific activity. The results suggest that PABA affects the SOS DNA repair pathway and the mutagenic response of E. coli. PABA appears to be an effective bioantimutagen reducing mutagenesis by modulating the error-prone DNA repair (SOS) response.  相似文献   

19.
Induction of lambda prophage in lysogenic E. coli cells exposed to ionizing radiation of different LET was studied as a function of dose I(D). Activities of pleiotropic RecA protein were shown to contribute to the shape of the I(D) curve. The experimental data were fitted by the function I(D) = alpha D(1-exp(-D0-1.D]exp(-beta D). Inducibility alpha increased with increasing LET which was related to the increased incidence of DNA lesions being a SOS-system call.  相似文献   

20.
The following solvents did not induce prophage lambda in the Escherichia coli WP2s(lambda) Microscreen assay: acetone, benzene, chloroform, ethanol, n-hexane, isopropanol, methanol, toluene, and a mixture of the three isomers of xylene. Dimethyl sulfoxide was genotoxic in the presence and absence of S9, and methylene chloride was weakly genotoxic in the presence of S9. The genotoxic potencies of 2-aminoanthracene and 2-nitrofluorene were reduced when dissolved in DMSO or methanol compared to their potencies when dissolved in acetone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号