首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germination of nondormant seeds of Manfreda brachystachya (Agavaceae) was analyzed at temperatures ranging from 11–35°C. Maximum germination (95%) occurred at 25°C. An exponential sigmoid relationship was found between time and cumulative germination. Germination rate for every subpopulation (10–90% germination) was estimated by means of a normal distribution analysis. The kurtosis indicated die amplitude of the range of temperatures where the highest germination rates were concentrated, and the skew indicated sharply inhibitory temperatures in the range of temperatures used. Based on analysis of the normal distribution models for each subpopulation, we calculated a theoretical function which described germination rate over the temperature range considered: F(T,x) = A × exp[-B(C−1)2], where A is the function that describes germination rate for each subpopulation (characterized by the percentage [x] at optimal temperature); B is a shape parameter, 1/(σ2); and C is the ratio between each germination temperature (T) and the optimal germination temperature. The Gaussian curves were used to calculate thermal time, and base and ceiling temperatures. Germination thermal time ranged from 1333 to 2373°C h, and base and ceiling temperatures were 10.44 ± 0.7°C and 39.54 ± 0.7°C, respectively. There was a linear relationship between thermal time and cumulative percentage of germination of the subpopulations. Based on fitted curves for each subpopulation, the use of a general model for all the subpopulations has been proven: F8 = A × exp[−5.9437(C−1)2], where changes in the curves for each subpopulation depended on temperature only.  相似文献   

2.
This study aims to explore the effect of environmental factors (temperature, light, storage time) on germination response and dormancy patterns in eight Mediterranean native wildplants, belonging to the Euphorbia L. genus. In detail, we considered E. amygdaloides subsp. arbuscula, E. bivonae subsp. bivonae, E. ceratocarpa, E. characias, E. dendroides, E. melapetala, E. myrsinites, and E. rigida. We collected seeds from natural plant populations and performed germination assays in climatic chambers at seven constant temperatures (from 5 to 35°C, with 5°C increments), and four fluctuating temperature regimes (8/15, 8/20, 8/25, and 8/30°C, with a 12/12 hr thermoperiod). Germination assays were set up both in dark (D) and in light/dark conditions (L/D, 12/12 hr photoperiod), after short and long seed storage (SS around 30 days and LS around 150 days). For all these species, except E. amygdaloides subsp. arbuscula, results show that the final germinated proportions were improved by a long storage period (>150 days), which supports the existence of nondeep physiological dormancy. Optimal temperature levels ranged from 14.3 to 21.3°C and base temperatures ranged from 5.6 to 12.1°C, while ceiling temperatures from 25.6 to 34.7°C. For none of these species, germinations were favored by an alternating daily temperature regime, while in several instances, germinations were quicker and more complete in darkness, than in an alternating light/dark regime. In some instances, extreme temperature levels (5 and 30°C) induced dormancy and germinations did not resume when seeds were exposed at optimal temperature levels. Results are discussed in terms of the dynamics of emergences and how this might be affected by climate changes.  相似文献   

3.
Previous studies examining the seeds of most Trillium species have reported double dormancy, a type of seed dormancy where two cold periods and one warm period are needed for complete germination. In the present paper, we describe a field study examining the federally endangered Trillium reliquum Freeman (Trilliaceae) in which moderate to high numbers of seeds germinated after one winter following seed production. Sixteen baskets with seeds were placed in four T. reliquum populations (four baskets in each population) in Georgia, USA, in June 2005. In spring 2006, all seed baskets contained seedlings. Germination percentages ranged from 33.3 to 83.3% across sites with a mean of 56.9 ± 3.9%. Trillium reliquum had higher germination percentages compared with other field‐based germination studies with other Trillium species. Our findings will inform future demographic studies of T. reliquum and suggest that double dormancy in seeds may not be as widespread as previously reported within the genus Trillium.  相似文献   

4.
A germination study was carried out on seeds of Clinopodium sandalioticum (Bacch. & Brullo) Bacch. & Brullo ex Peruzzi & Conti (Lamiaceae), a wild aromatic plant endemic to Sardinia. Seeds were incubated at a range of constant (5–25°C) and an alternating temperatures regime (25/10°C), with 12 hours of irradiance per day. The results achieved at 10°C were also compared with those obtained after a period of cold stratification at 5°C for three months. Final seed germination ranged from ca. 28% (5°C) to ca. 72% (25/10°C). A base temperature for germination (Tb) of ca. 5°C and a thermal constant for 50% germination (S) of 89.3°Cd were identified and an optimal temperature for germination (To) was estimated to be comprised between 20 and 25°C. Cold stratification negatively affected seed viability and germination at 10°C. Although a typical “Mediterranean germination syndrome”, could not be detected for C. sandalioticum seeds, these results were coherent with those previously reported for other Mediterranean Lamiaceae species.  相似文献   

5.
Abstract The germination responses of a nondormant fraction of a seed population of Taraxacum officinale Weber at constant temperatures in the range 7–34°C were analysed through a time-course study. Maximal percentage germination (approximately 90%) was attained at temperatures 10–18°C, where simple linear relationships were observed between the temperature and the germination rates, i.e. the reciprocals of the time taken to germinate by subpopulations with 20–80% germination. There was a variation in the required ‘thermal times’ (θ) which characterized the linear relationships, the distribution of which could be approximated for the seed population by the following distribution function: where m is the median of the distribution, and A is a shape parameter characterizing the pattern of the distribution. Final percentage germination decreased with increasing temperature from 20 to 32°C, where the final percentage germination vs. temperature plotted on a normal probability scale yielded a straight line, indicating the normality of the distribution of the upper limit temperature in the seed population. The estimated mean and standard deviation were 27.25 ± 3.75°C. The rate of germination for the subpopulation with 20–80% germination also decreased with increases in the temperature from 22 to 30°C. If the relationships between the temperature within this range and the rate for the subpopulations with 20–80% germination were approximated by the regression lines, the negative ‘thermal time’ characterizing the yielded linear relationship would have a distribution which could be approximated by the same function with the required thermal time for the relationship of suboptimal range. The parameters m and A for the negative ‘thermal time’ were determined to be 2870 K h and 1.7 × 10-10 K-3 h-3.  相似文献   

6.
Seeds of the empress tree ( Paulownia tomentosa Steud.) were imbibed for two weeks in darkness at constant temperatures (18, 23 or 28°C), and then irradiated with red light for 5 min. Germination was poor if it took place at the same temperature as imbibition, but a high percentage was achieved if the seeds were exposed to higher or lower temperatures before they were irradiated. Maximum germination was obtained when the difference between pretreatment and imbibition was about 10°C. The effect increased with the duration of the pretreatment and was optimal at 24 h. The effect decreased as the time lapse between temperature pretreatment and red light irradiation increased, and it was lost after two days. If pretreatment was shorter than 24 h (12 h). a high percent of germination was obtained by alternating pretreatment and imbibition temperatures. The germination of seeds imbibed in 40% heavy water was also stimulated by temperature pretreatments. Light and temperature also exhibited an interactive effect in the germination of seeds that were imbibed in darkness for only 3 days. For each of the germination phases there was a temperature at which the time needed for 50% germination was the shortest, namely 35°C during imbibition, 37.5°C in the period of Pfr activity. and 32.5°C during radicle protrusion. The data obtained are shortly discussed in relation to the domestication of empress tree in Southern Europe.  相似文献   

7.
The biophysical mechanism underlying photoinhibition of radish (Raphanus sativus L.) seed germination was investigated using three cultivars differing in sensitivity to continuous irradiation with far-red light (high-irradiance reaction of phytochrome). Sensitivity of germination to the inhibitory action of light was assessed by probing germination under osmotic stress (incubation in media of low water potentials adjusted with polyethylene glycol 6000) and expressed in terms of ‘germination potential’ (positive value of the water potential at which germination is inhibited by 50%). Far-red light decreases the germination potential to various degrees in the different cultivars, reflecting the light-sensitivity of germination in water. Removal of the seed coat increases the germination potential by a constant amount in darkness and light. It is concluded that germination depends on the expansive force of the embryo which can be drastically diminished by far-red light. Seed-coat constraint and expansive force of the embryo interact additively on the level of the germination potential. Photoinhibition of germination was accompanied by an inhibition of water uptake into the seed. Analysis of seed water relations showed that osmotic pressure and turgor assumed higher levels in photoinhibited seeds, compared to seeds germinating in darkness, while the water potential was close to zero under both conditions. Far-red light produced a shift (to less negative values) in the curve relating water-uptake rate to external water potential, i.e. a reduction in the driving force for water uptake. It is concluded that photoinhibition of germination results from the maintenance of a high threshold of cell-wall extensibility in the embryo.  相似文献   

8.
Abstract Buchnera hispida, a facultative root parasite of grasses and graminaceous crops, has a light requirement for germination. Studies were carried out on the effects of varying photoperiods with or without preceding dark incubation, on seed germination. Buchnera seeds showed long-day behaviour, since they germinated at all photoperiods including continuous light, and longer photoperiods were more effective in triggering seed germination than shorter photoperiods. Also, effects of red and far-red light indicated that the phytochrome system is operative in the light-induced germination of Buchnera. Although dark incubation in water before illumination was not absolutely necessary for germination, it caused the seeds to respond more rapidly to light. The longer the time of the dark incubation the more responsive the seeds were to photoperiod except when 15 min light was given. The effectiveness of a preceding dark incubation in making Buchnera seeds sensitive to rapid light action was completely inhibited at 4°C. This is in agreement with the hypothesis that a reaction partner of the far-red absorbing form of phytochrome is produced during dark incubation of Buchnera seeds. Such an intermediate has also been reported in some positively photoblastic seeds of non-parasitic flowering plants.  相似文献   

9.
* The ability of hydrothermal time (HTT) and virtual osmotic potential (VOP) models to describe the kinetics of maize (Zea mays) and chickpea (Cicer arietinum) seed germination under variable conditions of water potential was investigated with a view to gaining an improved understanding of the impact of on-farm seed priming on seedling establishment through simulation. * Germination and/or imbibition time courses were recorded over a wide range of constant temperatures and water potentials and simple stepwise changes in water potential. * Both models adequately described germination under constant environmental conditions, but not conditions of water potential that varied. To test the hypothesis that this inaccuracy resulted from the use of ambient water potential, a parsimonious model of seed imbibition was developed to calibrate the HTT and VOP models (IHTT and IVOP) and drive them with estimates of seed water potential. * The IHTT and IVOP models described germination during stepwise changes in water potential more accurately than the conventional models, and should contribute to improved predictions of germination time in the field.  相似文献   

10.
Seed passage through the gut of vertebrates can be important for seed dispersal, but might influence seed viability. The ability of seeds to germinate after ingestion by seed-eating fish is important for the population dynamics of some plant species, and significant in the evolution of plant–fish interactions. Certain fish in the Okavango Delta, Botswana, are fruit- and seed-eaters and could act as seed dispersers. We sampled 14 fish species in 2013, finding Nymphaea nouchali var. caerulea seeds in the digestive tracts of eight, most commonly in the striped robber Brycinus lateralis. Seeds extracted from the gut of this species had an overall mean germination success of 11.7%. This fish species might well be a legitimate seed disperser, having a positive effect on seed dispersal from parent plants in the Okavango Delta. The current study represents one of the first investigations of the likelihood of seed dispersal by fish on the African continent.  相似文献   

11.

Background and Aims

Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia.

Methods

Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures.

Key Results

Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations.

Conclusions

Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination.  相似文献   

12.
Effects of temperature on flower development in cineraria cv. Cindy Blue were studied in controlled environment rooms and in glasshouses. The base, optimum and maximum temperatures respectively for progress to macroscopic flower appearance after flower initiation respectively were 1.6°C, 19.3°C and 39.8°C. From these cardinal temperatures, a thermal time requirement for flower appearance after flower initiation was calculated to be 130°Cd. The base, optimum and maximum temperatures for progress to anthesis after flower initiation were respectively 1.7°C, 22.3°C and 37.1°C and from these values, the thermal time required to reach anthesis after flower initiation was calculated to be 555°Cd. No significant difference was demonstrated between thermal times for flower development in plants grown in controlled environment growth rooms or under glasshouse conditions where irradiance and photoperiod varied markedly.  相似文献   

13.
A model of the effects of water stress on seed advancement and germination   总被引:1,自引:0,他引:1  
A model of seed germination is proposed which uses a variable with the units of an osmotic potential (virtual osmotic potential) to integrate the effect of a constant or a varying water potential. This differs from existing models that describe the effects of fixed water potentials on germination, or the effects of fixed priming water potentials on the subsequent germination at a fixed water potential. When a seed is sown, the virtual osmotic potential is assumed to fall at a rate that depends on the ambient water potential, and on the difference between its current and a minimum value. Radicle growth is assumed to initiate when the difference between the ambient water potential and the virtual osmotic potential exceeds a threshold. The germination of carrot and onion seeds at various fixed potentials below 0 MPa was well described by the virtual osmotic potential model. The model was also used to simulate the results of experiments in which seeds were given a single step change in water potential.  相似文献   

14.
Abstract Calmodulin (Cam), the heat-stable, ubiquitous, Ca2+-dependent regulator protein, has been purified to apparent homogeneity from germinating radish seeds (Raphanus sativus). The characteristics of radish Cam-molecular weight, absorption spectrum, Ca2+-dependent activation of brain phosphodiesterase (PDE)-are very similar to those described for Cam from other plant materials. Radish Cam, like other plant Cam, shows some differences to Cam of calf brain. The total amount of Cam in radish embryos at 24 h of germination is ca. 37 μg g−1 fresh weight. Approximately 95% of the total amount of Cam is present in the soluble fraction (supernatant at 100,000 g). The level in the embryo axis strongly increases in the first 24 h of germination (+540%); this increase is strongly reduced when the germination is inhibited by abscisic acid (ABA). In the presence of Ca2+, no ‘free’ Cam (i.e. not bound to other structures) is present in the soluble fraction, suggesting that, during early germination, Cam level is a limiting factor for the activities of Ca2+ -Cam-dependent systems. These studies suggest that Cam plays an important role in the early phases of seed germination. An inhibitor of the Ca2+-Cam-dependent phosphodiesterase is present in the soluble fraction from radish embryos; this substance decreases during germination. A possible role of this inhibitor during the early germination phases is hypothesized.  相似文献   

15.
Abstract. Symbiotic germination and development in vitro of Dactylorhiza majalis seeds with a strain of Rhizoctonia is very temperature dependent. Above an optimum at 23–25 °C there is a marked decline in germination percentage. Seeds that did germinate at higher temperatures had only little or no development of mycorrhiza, and developed few or no rhizoids compared with seedlings raised at optimal or lower temperatures. Six-week-old seedlings grown for additional 4 weeks on a range of temperatures had an optimal length increase at 23–24.5 °C mean temperature. At superoptimal temperatures (26 °C), the seedlings contained smaller starch reserves than those at lower temperatures and increased about as much in length as seedlings grown at 13 °C but much less than those grown at optimum. Temperature also influenced the differentiation of the leafy shoot, seedlings growing to a larger size before shoot initiation in the temperature range of optimal growth. Because of the small span between optimal and too-high temperatures, a careful assessment of temperature optimum will be necessary in any orchid/fungus relationship before judging the success of symbiosis. At optimal temperature, symbiotic germination gave a germination percentage about twice that using a good asymbiotic method. The increase in seedling length was about 45% per week in symbiotic culture compared with less than 30% in the asymbiotic culture.  相似文献   

16.
Abstract A convenient test system for screening the thermal germination behaviour of seeds was developed for both basic and applied research in seed germination ecophysiology. Only two temperature-controlled facilities, a test period of about a month and a relatively small number of sample seeds arc needed to obtain information on the thermal-germination parameters of individual seed populations, such as lower or higher limit temperatures, and thermal times required for germination. In the test system, the germination performances of sample seed populations were compared under two temperature regimes: a gradually increasing temperature regime and a gradually decreasing temperature regime, in which the seeds were subjected to gradually changing temperatures in the range of 4 36°C. In order to assess the effects of various values for thermal-germination parameters on the patterns of germination performance in the system, the behaviour of model seeds characterized by a definite set of thermal germination parameters were investigated. Referring to the results of the simulations, the actual germination patterns of some wild-seed populations in the test system were interpreted in terms of thermal-germination parameters.  相似文献   

17.
18.
Seed dispersal by animals is a complex process involving several distinct stages: fruit removal by frugivores, seed delivery in different microhabitats, seed germination, seedling establishment, and adult recruitment. Nevertheless, studies conducted until now have provided scarce information concerning the sequence of stages in a plant's life cycle in its entirety. The main objective of this study was to evaluate the immediate consequences of frugivore activity for Eugenia umbelliflora (Myrtaceae) early recruitment by measuring the relative importance of each fruit‐eating bird species on the establishment of new seedlings in scrub and low restinga vegetation in the Atlantic rainforest, Brazil. We conducted focal tree observations on E. umbelliflora trees recording birds' feeding behaviour and post‐feeding movements. We also recorded the fate of dispersed seeds in scrub and low restinga vegetation. We recorded 17 bird species interacting with fruits in 55 h of observation. Only 30% of the handled fruits were successfully removed. From 108 post flight movements of exit from the fruiting trees, 30.6% were to scrub and 69.4% to low restinga forest. Proportion of seed germination was higher in low restinga than in the scrub vegetation. Incorporating the probabilities of seeds' removal, deposition, and germination in both sites, we found that the relative importance of each frugivorous bird as seed dispersers varies largely among species. Turdus amaurochalinus and Turdus rufiventris were the best dispersers, together representing almost 12% probability of seed germination following removal. Our results show the importance of assessing the overall consequence of seed dispersal within the framework of disperser effectiveness, providing a more comprehensive and realistic evaluation of the relative importance of different seed dispersers on plant population dynamics.  相似文献   

19.
20.
In Mauritius, many of the worst invasive plant species have fleshy fruits and rely on animals for dispersal. The introduced red‐whiskered bulbul (Pycnonotus jocosus) feeds on many fleshy‐fruited species, and often moves from invaded and degraded habitats into higher quality native forests, thus potentially acting as a mediator of continued plant invasion into these areas. Furthermore, gut passage may influence seed germination. To investigate this, we fed fleshy fruits of two invasive plant species, Ligustrum robustum and Clidemia hirta, to red‐whiskered bulbuls. Gut passage times of seeds were recorded. Gut‐passed seeds were sown and their germination rate and germination success compared with that of hand‐cleaned seeds, as well as that of seeds in whole fruits. Gut passage and hand‐cleaning had significant positive effects on germination of both species. Gut‐passed seeds of both C. hirta and L. robustum germinated faster than hand‐cleaned seeds. However, for L. robustum, this was only true when compared with hand‐cleaned seeds with intact endocarp; when compared with hand‐cleaned seeds without endocarp, there was no difference. For overall germination success, there was a positive effect of gut passage for C. hirta, but not for L. robustum. For both C. hirta and L. robustum, no seeds in intact fruits geminated, suggesting that removal of pulp is essential for germination. Our results suggest that, first, the initial invasion of native forests in Mauritius may not have happened so rapidly without efficient avian seed dispersers like the red‐whiskered bulbul. Second, the bulbul is likely to be a major factor in the continued re‐invasion of C. hirta and L. robustum into weeded and restored conservation management areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号