首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kinetic properties of rrn promoters in Escherichia coli   总被引:3,自引:0,他引:3  
Zhang X  Dennis P  Ehrenberg M  Bremer H 《Biochimie》2002,84(10):981-996
  相似文献   

3.
Effects of changes in intracellular ion concentrations on the interactions of Escherichia coli lac repressor with lac operator mutants and on the interactions of RNA polymerase with various promoters have been investigated in vivo. The intracellular ionic environment was reproducibly varied by changing the osmolality of the 4-morpholinepropanesulfonic acid minimal growth medium. As the osmolality of the growth medium is varied from 0.1 to 1.1 osmolal, the total intracellular concentration of K+ increases linearly from 0.23 +/- 0.03 to 0.93 +/- 0.05 molal and the total intracellular concentration of glutamate increases linearly from 0.03 +/- 0.01 to 0.26 +/- 0.02 molal. The sum of the changes in the total concentrations of these two ions appears sufficient to compensate for a given change in external osmolality, indicating that K+ and glutamate are the primary ionic osmolytes under these conditions and that these ions are free in the cytoplasm. In support of this, in vivo 39K NMR experiments as a function of external osmolality indicate that changes in the total cytoplasmic K+ concentration correspond to changes in the free cytoplasmic K+ concentration. Extents of interaction of lac repressor and RNA polymerase with their specific DNA sites were monitored by measuring the amounts of beta-galactosidase produced under the control of these sites. For both lac repressor and RNA polymerase, it was found that formation of functional protein-DNA complexes in vivo is only weakly (if at all) dependent on intracellular ion concentration. These results contrast strongly with those obtained on these systems in vitro, which showed that both the equilibria and kinetics of binding are extremely salt-dependent. We discuss several possible mechanisms by which E. coli may compensate for the potentially disruptive effects of these large changes in the intracellular ionic environment.  相似文献   

4.
5.
6.
7.
8.
The interaction of Escherichia coli RNA polymerase with poly[d(A-T)] and poly[d-(I-C)] was studied by difference absorption spectroscopy at temperatures, from 5 to 45 degrees C in the absence and presence of Mg2+. The effect of KCl concentration, at a fixed temperature, was studied from 12.5 to 400 mM. Difference absorption experiments permitted calculation of the extent of DNA opening induced by RNA polymerase and estimation of the equilibrium constant associated with the isomerization from a closed to an open RNA polymerase-DNA complex. delta H0 and delta S0 for the closed-to-open transition with poly[d(A-T)] or poly[d(I-C)] complexed with RNA polymerase are significantly lower than the values associated with the helix-to-coil transition for the free polynucleotides. For the RNA polymerase complexes with poly[d(A-T)] and poly[d(I-C)] in 50 mM KCl, delta H0 approximately 15-16 kcal/mol (63-67 kJ/mol) and delta S0 approximately 50-57 cal/K per mol (209-239 J/K per mol). The presence of Mg2+ does not change these parameters appreciably for the RNA polymerase-poly[d(A-T)] complex, but for the RNA polymerase-poly[d(I-C)] complex in the presence of Mg2+, the delta H0 and delta S0 values are larger and temperature-dependent, with delta H0 approximately 22 kcal/mol (92 kJ/mol) and delta S0 approximately 72 cal/K per mol (approx. 300 J/K per mol) at 25 degrees C, and delta Cp0 approximately 2 kcal/K per mol (approx. 8.3 kJ/K per mol). The circular dichroism (CD) changes observed for helix opening induced by RNA polymerase are qualitatively consistent with the thermally induced changes observed for the free polynucleotides, supporting the difference absorption method. The salt-dependent studies indicate that two monovalent cations are released upon helix opening. For poly[d(A-T)], the temperature-dependence of enzyme activity correlates well with the helix opening, implying this step to be the rate-determining step. In the case of poly[d(I-C)], the same is not true, and so the rate-determining step must be a process subsequent to helix opening.  相似文献   

9.
This paper presents methods developed in order to analyze experimental results concerning the binding of Escherichia coli DNA-dependent RNA polymerase to DNA at high and at low DNA concentrations, using the filter retention assay. The basis hypotheses, under which the mathematical expressions for describing the kinetics of binding are derived, are as follows. (a) At low DNA concentration: equivalence and independence of the specific binding sites; first-order dependence of the binding reaction on both DNA and protein concentration. (b) At high DNA concentration: equivalence and independence of the non-specific binding sites; no direct transfer or one-dimensional sliding of the protein along the DNA. Comparison between theoretical predictions and experimental results at high DNA concentration will allow one to determine the relative value of the rates of binding of RNA polymerase to different promoters (between 1 and 2 in T5 DNA). Binding experiments performed at low DNA concentration are reported in this paper: these results and the analysis which is reported allow one to determine the value of the rate constant of formation of non-filterable complexes for the system fd DNA (replicative form) . RNA-polymerase (kappa a = 3.3 X 10(8) M-1 s-1 in 0.1 M NaCl, 0.01 M MgCl2).  相似文献   

10.
11.
The selectivity of binding of Escherichia coli RNA polymerase holoenzyme to a promoter-containing fragment of T7 DNA has been investigated over a range of solution conditions by using a double-label nitrocellulose filter binding assay. A 32P-labeled HaeIII restriction fragment of T7 D111 DNA containing the A1 and D promoters for the E. coli enzyme and a 3H-labeled nonpromoter HaeIII fragment of comparable size were incubated with sigma-saturated holoenzyme and filtered through a nitrocellulose membrane filter. We find that the extent of binding of polymerase to the promoter-containing fragment decreases dramatically with increasing salt concentrations and with increasing pH and increases moderately with increasing temperature in the range 0-37 degrees C. By contrast, the nonspecific interaction of polymerase with the nonpromoter fragment is known to be relatively insensitive to pH and temperature, though a strong function of salt concentration [deHaseth, O. L., Lohman, T. M., Burgess, R. R., & Record, M. T., Jr. (1978) Biochemistry 17, 1612-1622]. Selectivity of binding of RNA polymerase in our assay is demonstrated by a greater fractional retention of the promoter-containing fragment than of the nonpromoter fragment on the filter. We observe selective binding over the temperature range from 0 to 37 degrees C near neutral pH and over a wide range of Na+ concentrations, in the presence or absence of Mg2+. Because of the different dependences of promoter and nonpromoter binding on pH and temperature, the extent of selectivity increases with increasing temperature and decreases with increasing pH. Quantitative treatment of these binding data [Strauss, H. S., Burgess, R. R., & Record, M. t., Jr. (1980) Biochemistry (second paper of four in this issue)] confirms these conclusions and shows that selectivity is a function of ion concentration as well.  相似文献   

12.
The global regulatory nucleotides (p)ppGpp are major effectors for the control of ribosomal RNA in bacteria. The effector molecules accumulate to different cellular levels at amino acid deprivation or during different growth rates. They change the activity of RNA polymerase to transcribe from sensitive promoters (e.g. ribosomal RNA promoters). Sensitive promoters are characterized by a GC-rich discriminator element in addition to further structural requirements not completely understood. ppGpp must also be regarded as a mediator for growth rate control although it appears that ppGpp-independent regulatory mechanisms exist. Inhibition occurs at various steps during initiation but also during elongation where RNA polymerase pausing is observed. From the existing data a mechanistic model for the action of ppGpp is suggested considering structural details of RNA polymerase obtained at high resolution.  相似文献   

13.
Weak stringent or relaxed responses were induced in Escherichia coli (relA+), using mild amino acid starvation or treatment with chloramphenicol at low concentrations, respectively, such that the growth rate was barely reduced. In this manner, the intracellular concentration of the nucleotide guanosine tetraphosphate, ppGpp, could be varied in any desired range between 0 and 1000 pmol of ppGpp per OD460 unit of culture mass. At the same time, the rate of synthesis of stable RNA (rs; rRNA and tRNA) was measured, relative to the total instantaneous rate of RNA synthesis (rt). The correlation between the cytoplasmic concentration of ppGpp and stable RNA gene activity (rs/rt) was the same as that observed previously with relA+ and relA strains growing exponentially at different rates in different media. This suggests that the distinction between growth control and stringent control of stable RNA synthesis is arbitrary, and that both kinds of control reflect the same ppGpp-dependent phenomenon. By increasing the stable RNA gene dosage, using high copy number plasmids carrying an rrn gene, we have tested the idea that ppGpp partitions the bacterial RNA polymerase into two forms with different probabilities to initiate at stable RNA and mRNA promoters. The relaxed response was not significantly altered, but the extent of the stringent response was reduced by the presence of extra rrn genes. The results agree with quantitative predictions derived from the RNA polymerase partitioning hypothesis.  相似文献   

14.
15.
16.
Temperature dependence of RNA synthesis parameters in Escherichia coli   总被引:19,自引:10,他引:9       下载免费PDF全文
For Escherichia coli B/r growing in glucose minimal medium, the following parameters of RNA synthesis remained invariant between 20 and 40 degrees C: RNA polymerase concentration (RNA polymerase/mass), rRNA and tRNA concentration (RNA/mass), RNA polymerase activity (fraction of total RNA polymerase actively engaged in RNA chain elongation), and stable RNA synthesis relative to total RNA synthesis. The following parameters increased 3.4-fold over the same temperature range: rRNA chain elongation rate, guanosine tetraphosphate (ppGpp) concentration, and culture growth rate. Above 40 degrees C, the changes became more complex, and the growth rate began to decrease. The observation that most RNA synthesis parameters are temperature invariant despite the increase of ppGpp suggests that the mechanism of RNA synthesis control by ppGpp, assumed to involve an interaction of RNA polymerase wtih ppGpp, is itself temperature dependent such that, with increasing temperature, higher concentrations of ppGpp are required to affect the RNA polymerase.  相似文献   

17.
18.
19.
Transcription in bacteria at different DNA concentrations   总被引:12,自引:6,他引:6       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号