首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlled studies and most observational studies published over the last 5 years suggest that the addition of synthetic progestins to estrogen in hormone replacement therapy (HRT), particularly in continuous-combined regimen, increases the breast cancer (BC) risk compared to estrogen alone. By contrast, a recent study suggests that the addition of natural progesterone in cyclic regimens does not affect BC risk. This finding is consistent with in vivo data suggesting that progesterone does not have a detrimental effect on breast tissue. The increased BC risk found with the addition of synthetic progestins to estrogen could be due to the regimen and/or the kind of progestin used. Continuous-combined regimen inhibits the sloughing of mammary epithelium that occurs after progesterone withdrawal in a cyclic regimen. More importantly, the progestins used (medroxyprogesterone acetate and 19-Nortestosterone-derivatives) are endowed with some non-progesterone-like effects, which can potentiate the proliferative action of estrogens. Particularly relevant seem to be the metabolic and hepatocellular effects (decreased insulin sensitivity, increased levels and activity of insulin-like growth factor-I, and decreased levels of SHBG), which contrast the opposite effects induced by oral estrogen.  相似文献   

2.
Synthetic progestins are used by millions of women as contraceptives and in hormone replacement therapy (HRT), although their molecular mechanisms of action are not well understood. The importance of investigating these mechanisms, as compared to those of progesterone, has been highlighted by clinical evidence showing that medroxyprogesterone acetate (MPA), a first generation progestin, increases the risk of breast cancer and coronary heart disease in HRT users. A diverse range of later generation progestins with varying structures and pharmacological properties is available for therapeutic use and it is becoming clear that different progestins elicit beneficial and adverse effects to different extents. These differences in biological activity are likely to be due to many factors including variations in dose, metabolism, pharmacokinetics, bioavailability, and regulation of, and/or binding, to serum-binding proteins and steroidogenic enzymes. Since the intracellular effects on gene expression and cell signaling of steroids are mediated via intracellular steroid receptors, differential actions via the progesterone and other steroid receptors and their isoforms, are likely to be the major cause of differential intracellular actions of progestins. Since many progestins bind not only to the progesterone receptor, but also to the glucocorticoid, androgen, mineralocorticoid, and possibly the estrogen receptors, it is plausible that synthetic progestins exert therapeutic actions as well as side-effects via some of these receptors. Here we review the molecular mechanisms of intracellular actions of old (MPA, norethisterone, levonorgestrel, gestodene) vs. new (drospirenone, dienogest, trimegestone) generation progestins, via steroid receptors.  相似文献   

3.
Progestins and cardiovascular risk markers   总被引:2,自引:0,他引:2  
Sitruk-Ware R 《Steroids》2000,65(10-11):651-658
Several risks are attributed to progestins as a class-effect; however, the progestins used in hormone replacement therapy (HRT) have varying pharmacologic properties and do not induce the same side effects. Natural progesterone (P) and some of its derivatives, such as the 19-norprogesterones, do not exert any androgenic effect and, hence, have no negative effect on the lipids. On the other hand, the 19-nortestosterone derivatives and even some 17-hydroxyprogesterones have a partial androgenic effect, which may explain some of the negative effects observed on surrogate markers of cardiovascular risk. The relevance of the lipid changes induced by sex steroids has been questioned, and studies in the female cynomolgous monkey have not shown a direct relationship to atherosclerosis. Results suggest that estrogens (E) have antiatherogenic effects and that P does not reverse the beneficial effect of estradiol. Also, sex hormones modulate the vasomotor response of the main arteries. E preserves the normal endothelium-mediated dilation of coronary arteries, and P does not reverse this potential cardioprotective mechanism. In the same animal model, the addition of cyclic or continuous medroxyprogesterone acetate (MPA) to E inhibited vasodilatation by 50%, while nomegestrol acetate did not diminish the E-induced vasodilatation. Not all progestins act similarly on vasomotion or affect cardiovascular risk factors in the same way. Progestins, such as MPA or norethisterone acetate (NETA), exert a partial detrimental effect on the beneficial actions of estrogens with regard to lipid changes, atheroma development, or vasomotion. In contrast, progesterone itself does not have this inhibitory effect on lipid changes and vascular reactivity in animal models or on exercise-induced myocardial ischemia in humans. Nonandrogenic molecules of P itself and of derivatives, such as 19-norprogesterones, would appear neutral on the vessels. Several ongoing randomized controlled trials of HRT are focusing on primary or secondary prevention of coronary heart disease. Unfortunately, most of these large trials have selected the same HRT regimen for their study design. Further studies with other treatment regimens are thus needed and should consider the various steroids used in different countries.  相似文献   

4.
The incidence of cardiovascular disease (CAD) differs between men and women, in part because of differences in risk factors and hormones. This sexual dimorphism means a lower incidence in atherosclerotic diseases in premenopausal women, which subsequently rises in postmenopausal women to eventually equal that of men. These observations point towards estrogen and progesterone playing a lifetime protective role against CAD in women. As exogenous estrogen and estrogen plus progesterone preparations produce significant reductions in low-density lipoprotein (LDL) cholesterol levels and significant increases in high-density lipoprotein (HDL) cholesterol, this should in theory lower the risk of CAD. However, results from oral contraceptive (OC) use and combined estrogen and progesterone hormone replacement therapy (HRT) have suggested that hormone replacement regimes do not provide cardiovascular protection. In fact, depending on the preparation and the presence or absence of genetic risk factors, an increased risk of cardiovascular diseases such as venous thrombosis, myocardial infarction (MI) and stroke have been observed. Interestingly, in the majority of studies the increase in risk was highest in the first year, after which an increase in risk was not observed, and in some studies a lower risk of CAD was evident after four or five years of exogenous hormone administration. While the debate continues about the merits of HRT, and several good reviews exist on the statistics of CAD in relation to exogenous hormones, we have decided to review the literature to piece together the physiological actions of estrogen and progesterone preparations on the individual mechanistic components leading to CAD; namely, the altered endothelium and the haemostatic balance between coagulation and fibrinolysis. We present possible mechanisms for how HRT and OCs protect against MI in the absence of cardiovascular risk factors but increase the incidence of MI in their presence. We also speculate on the roles played by hormones on the short- and long-term risks of cardiovascular disease.  相似文献   

5.
Evidence is increasing suggesting that adding progestins to estrogen replacement therapy may be more harmful then beneficial, however it is debatable whether all progestins act equally on breast epithelial cells.

Experimental data with the comparison of various progestins in the same in vitro model present a rather high evidence that there may be differences between the various progestins regarding breast cancer risk. Especially of concern may be to differentiate between primary and secondary risk i.e. between benign and malignant breast epithelial cells.

The epidemiological studies and especially the Women's Health Initiative (WHI) trial, so far the only prospective placebo-controlled interventional study, demonstrate an increased risk under combined estrogen/progestin therapy, but they have the limitations that they up to now cannot discriminate between the various progestins mostly due to too small or not comparable patient numbers in the subgroups with the various progestins. However, there is evidence that the natural progesterone, possibly also the transdermal usage of synthetic progestins, may avoid an increased risk, but this must be proven in further clinical trials.  相似文献   


6.
7.
The use of hormonal therapies, including hormonal contraceptives (HC) and postmenopausal hormone replacement therapy (HRT) have been shown to influence breast cancer (BC) risk. However, the variations of these effects among populations and ethnic groups are not completely documented, especially among Hispanic women. We evaluated the association between HC and premenopausal BC risk, and between HRT and postmenopausal BC risk in Mexican women. Data from a Mexican multi-center population-based case–control study ofwomen aged 35 to 69 years were analysed. A total of 1000 cases and 1074 matched controls were recruited between 2004 and 2007. Information on hormonal therapy was collected through a structured questionnaire. Results were analysed using conditional logistic regression models. Overall, HC were used by 422/891 (47.3%) premenopausal women and HRT was used by 220/1117 (19.7%) postmenopausal women. For HC, odds ratios (ORs) for BC were 1.11 (95% confidence interval (CI): 0.82, 1.49) for current users and 1.68 (95% CI: 0.67, 4.21) for ever-users. No clear effect of duration of use was observed. For HRT, the OR for BC was significantly increased in ever users (OR: 1.45; 95% CI: 1.01, 2.08). A non-significant increased risk was observed for combined estrogen/progestin, (OR =  1.85; 95% CI: 0.84, 4.07) whereas no effect was observed for the use of estrogen alone (OR = 1.14; 95% CI: 0.68, 1.91). Our results indicate that, HC had a non-significant effect on the risk of pre-menopausal BC, but suggested that injected contraceptives may slightly increase the risk, whereas HRT had a significant effect on post-menopausal BC in this population. This study provides new information about the effects of HC and HRT on BC risk in a Mexican population, which may be of relevance for the population of Latin America as a whole.  相似文献   

8.
The results from the Women's Health Initiative study on enhanced breast cancer risk in postmenopausal women using an estrogen/progestin combination clearly indicate the need for a comparison of different progestins with regard to cancer risk. To shed some light on this issue, we have investigated the influence of progesterone and various synthetic C19- and C21-progestins on cell proliferation of a human breast cancer cell line in vitro. Of special interested was the comparison of two different regimens commonly used in HRT, sequential and continuous combination with estradiol. We used the human breast cancer cell line MCF-7 as a model. Progesterone (P), chlormadinone acetate (CMA), dienogest (DNG), gestodene (GSD), 3-ketodesogestrel (KDG), levonorgestrel (LNG), medroxyprogesterone acetate (MPA), and norethisterone (NET) were investigated in the range of 0.01nm to 10 micro M alone and in combination with 10 nM estradiol. Cell proliferation was measured after 7 days using the ATP chemosensitivity test. Tested alone, CMA, DNG, GSD, KDG, MPA and NET significantly stimulated cell proliferation, but only at high dosages. Sequentially combined with estradiol, only CMA inhibited cell proliferation over the whole concentration range. Slight effects were found for DNG, GSD and KDG, whereas P and MPA only showed an effect at the highest concentration. NET had no significant effect on cell proliferation. Continuously combined, all progestins exhibited an inhibitory effect over the whole concentration range. The most prominent effects were found for P, CMA, GSD, and KDG. Only slight effects were found for DNG, MPA and NET. Our in vitro results indicate that the influence on breast cancer risk using HRT in postmenopausal women might depend on the type of progestin used as well as on the regimen applied. However, the net inhibitory in vitro effect of the progestins at clinically relevant dosages is rather minimal, and whether progestins in general can reduce breast cancer risk in long-term treatment remains uncertain. Further clinical trials are urgently needed to clarify this issue.  相似文献   

9.
It has been known for many years that sex hormones modulate vasodilator responses of arteries supplying the uterus with blood. Recently, it has been shown that sex hormones such as estrogen modulate vasomotor responses of other arteries, including coronary arteries. It is thought that modulation of vasodilator and constrictor responses of coronary arteries may be one mechanism by which estrogen affects the risk of coronary heart disease. Although several studies have examined the effects (and potential mechanisms) of estrogen on vasodilator responses of nonatherosclerotic arteries, few have focused on estrogen's effects on atherosclerotic coronary arteries. In studies of ovariectomized atherosclerotic female cynomolgus monkeys, both long-term (2 years) and short-term (20 min) estradiol treatment augments dilator responses to acetylcholine, but not nitroglycerin. Presumably, this indicates an effect of estradiol on endothelium-mediated dilator responses of coronary arteries. Addition of the progestin medroxyprogesterone acetate diminishes the beneficial effect of conjugated equine estrogens on these dilator responses. This is significant because a progestin is usually added to estrogen replacement to reduce the risk of endometrial and breast cancer associated with unopposed estrogen therapy. However, it would seem that not all progestins act similarly on vascular reactivity. Studies in monkeys indicate that addition of progesterone or the progestin medroxyprogesterone acetate does not diminish the beneficial effects of estrogen on coronary dilator responses. Thus it would appear that different estrogen/progestin combinations may affect vascular reactivity in different manners, There is also an effort being made to examine the potential of different kinds of estrogens on cardiovascular risk. Studies in monkeys indicate that one of the estrogens found in conjugated equine estrogens (17 alpha-dihydroequilenin) has estrogen effects on vascular reactivity without having detrimental effects on uterine pathology. The isoflavones “plant estrogens” found in soy protein also have estrogenic effects on vascular reactivity and inhibition.  相似文献   

10.
The use of combined hormone replacement therapy (HRT) with oestrogens and progestins in postmenopausal women has been associated with an increased risk for developing breast cancer. The reasons are not fully understood, but influence of HRT on endogenous conversion of female sex hormones may be involved. The expression of 17β hydroxysteroid dehydrogenases (17βHSD), which are enzymes catalysing the conversion between more or less potent oestrogens, may partly be regulated by progestins. The breast cancer cell lines T47D, MCF7 and ZR75-1 were treated with progesterone, medroxyprogesterone acetate (MPA) or levonorgestrel for 48 and 72 h at 10(-7) and 10(-9)M to investigate influence on 17βHSD1, 17βHSD2 and 17βHSD5 mRNA expression measured by real time PCR. The expression of 17βHSD1 increased in progesterone and levonorgestrel treated T47D cells (48 h 10(-7)M P=0.002; P<0.001) and 17βHSD5 increased after progesterone treatment (48 h 10(-7)M P=0.003), whereas the expression of 17βHSD2 decreased after the (48 h 10(-7)M P=0.003; P<0.001). Similar, but less prominent effects were seen in MCF7 and ZR75-1. The progestin effects on 17βHSD-expression were lost when T47D cells were co-treated with progestins and the progesterone receptor (PgR) inhibitor mifprestone. We show that both reductive (17βHSD1 and 17βHSD5) and oxidative (17βHSD2) members of the 17βHSD-family are under control of progesterone and progestins in breast cancer cell lines. This is most clear in T47D cells which have high PgR expression. 17βHSD-enzymes are important players in the regulation of sex steroids locally in breast tumours and tumoural expression of various 17βHSD-enzymes have prognostic and treatment predictive relevance. We propose a mechanism for increased breast cancer risk after HRT in which hormone replacement affects the expression of 17βHSD-enzymes, favouring the expression of reductive enzymes, which in turn could increase levels of bioactive and mitogenic estrogens in local tissue, e.g. breast tissue.  相似文献   

11.
Estrogens along with progesterone/progestins, and other hormones, are important determinants of cancer in the breast, endometrium and ovary. Estrogens may increase the risk of breast cancer through various mechanisms and at various phases of life, with a possible synergistic effect of progesterone/progestins. Exposure to high doses of placental hormones, such as estrogens and/or progesterone, during pregnancy may play a pivotal role in reducing subsequent breast cancer susceptibility. Estrogens cause endometrial cancer, an effect that can be reduced, prevented or reversed by progesterone/progestin — if allowed to act for a sufficiently long period of each cycle. The role of sex hormones seems important for ovarian carcinogenesis. Intake of combined oral contraceptives has a substantial and well-documented protective effect on endometrial and ovarian cancer risks. Epidemiological observations and experimental data from an animal model indicate that estrogens may have an adverse effect, while progesterone/progestins have a risk reducing effect directly on the ovarian epithelium. Thus, estrogens and other sex hormones have potential effects on the three most important female cancers. Research has yet to define how some of the risk factors can be modified or treatment regimens can be improved to reduce these cancer risks.  相似文献   

12.
Progestins in the menopause   总被引:2,自引:0,他引:2  
While the benefits of progestin use in hormone replacement therapy (HRT) are well recognised as far as endometrial protection is concerned, their risks and drawbacks have generated controversial articles. The data related to the progestin effect on breast tissue has been interpreted differently from country to country. However it has been admitted that, according to the type of progestin used, the dose and duration of its application, a predominant antiproliferative effect is observed in the human breast cells. As far as breast cancer risk is concerned, most epidemiological studies do not suggest any difference between the estrogens given alone or combined to progestins in HRT. When the cardiovascular risk factors are considered, some molecules with a higher androgenic potency than others, attenuate the beneficial effects of estrogens on the lipid profile and the vasomotion as well. On the other hand, other progestins devoid of androgenic properties do not exert these deleterious effects. The epidemiological data does not suggest any negative effect of the progestins administered together with estrogens on cardiovascular morbidity or mortality.

However, recent results suggest that in women with established coronary heart disease (CHD), HRT may not protect against further heart attacks, when the progestin selected possesses androgenic properties.

Complying with the classic contra indications of HRT and selecting molecules devoid of estrogenic, androgenic, or glucocorticoid effect should allow a larger use of the progestins without any major drawback.  相似文献   


13.

Objective

To provide information and recommendations to women with a previous diagnosis of breast cancer and their physicians regarding hormone replacement therapy (HRT).

Outcomes

Control of menopausal symptoms, quality of life, prevention of osteoporosis, prevention of cardiovascular disease, risk of recurrence of breast cancer, risk of death from breast cancer.

Evidence

Systematic review of English-language literature published from January 1990 to July 2001 retrieved from MEDLINE and CANCERLIT.

Recommendations

· Routine use of HRT (either estrogen alone or estrogen plus progesterone) is not recommended for women who have had breast cancer. Randomized controlled trials are required to guide recommendations for this group of women. Women who have had breast cancer are at risk of recurrence and contralateral breast cancer. The potential effect of HRT on these outcomes in women with breast cancer has not been determined in methodologically sound studies. However, in animal and in vitro studies, the development and growth of breast cancer is known to be estrogen dependent. Given the demonstrated increased risk of breast cancer associated with HRT in women without a diagnosis of breast cancer, it is possible that the risk of recurrence and contralateral breast cancer associated with HRT in women with breast cancer could be of a similar magnitude. · Postmenopausal women with a previous diagnosis of breast cancer who request HRT should be encouraged to consider alternatives to HRT. If menopausal symptoms are particularly troublesome and do not respond to alternative approaches, a well-informed woman may choose to use HRT to control these symptoms after discussing the risks with her physician. In these circumstances, both the dose and the duration of treatment should be minimized.

Validation

Internal validation within the Steering Committee on Clinical Practice Guidelines for the Care and Treatment of Breast Cancer; no external validation.

Sponsor

The steering committee was convened by Health Canada.

Completion date

October 2001.Hormone replacement therapy (HRT) connotes treatment with either estrogen alone or estrogen with progesterone in postmenopausal women. Menopausal symptoms, such as hot flashes and vaginal dryness, and the potential long-term effects of estrogen deprivation are a concern to women with breast cancer, particularly those in whom menopause develops early as a result of adjuvant chemotherapy.Traditionally, the use of HRT has been contraindicated in women with breast cancer because of the notion that the development and growth of breast cancer is estrogen dependent and that the introduction of HRT may increase the risk of breast cancer recurrence. The focus of this guideline is on whether it is safe to give HRT to women with breast cancer.  相似文献   

14.
Sex hormones and coronary disease: a review of the clinical studies   总被引:12,自引:0,他引:12  
M F Kalin  B Zumoff 《Steroids》1990,55(8):330-352
A male to female ration of coronary disease of 2:1 has been a consistent finding. This differential persists event when the classic risk factors for coronary disease--hypertension, smoking, obesity, diabetes, and hyperlipidemia--are controlled for gender. The most likely ultimate cause of this phenomenon is male-female differences in sex hormone patterns. Clinical studies in this area have either compared the sex hormone profiles of men and women with and without coronary disease or computed the relative prevalence of disease in populations that differ in their sex hormone patterns. In general, research findings have disputed the hypothesis that persons with coronary disease have low levels of a protective factor such as estrogen or progesterone and high levels of testosterone. Coronary disease patients actually have elevated estrogen levels and low testosterone levels; endogenous progesterone levels are normal before infarction but show a stress-mediated increase in the immediate postinfarction period. Findings of a low prevalence of coronary disease in premenopausal women, a loss of protection after menopause, and a low prevalence of coronary disease in men with cirrhosis-related hyperestrogenemia suggest that natural estrogens are antiatherogenic. The protective effect of pregnancy against myocardial infarction, despite concomitant potentially thrombogenic levels of estrogen at the time, seems to indicate that progesterone, whose levels are also extremely high during pregnancy, plays a major anti-infarction protective effect distinct from that of estrogen. Studies of women oral contraceptive (OC) users and men taking estrogens for brief periods have found that these exogenous hormones produce coronary thrombosis but not atherosclerosis. Finally, the finding of increased coronary disease risk in long-term OC users indicates that synthetic estrogens favor coronary atherosclerosis by suppressing natural estrogen and progesterone production.  相似文献   

15.
Previous work from our laboratory has demonstrated that progesterone can inhibit estrogen-induced prolactin release in female rats. Since androgens have been reported to mimic progesterone actions in certain systems, and to antagonize estrogen action in rat uteri, the purpose of this study was to determine whether androgens, like progestins, can inhibit estrogen-induced prolactin release. The ovariectomized (26 days of age) immature rat was used as the model for analysis of this question. Dihydrotestosterone (DHT) was chosen to be used throughout the study since it does not undergo aromatization to estrogens. In response to estradiol exposure (2 micrograms/rat), prolactin release reached peak values at 12 h and returned to control levels by 24 h. A second injection of estradiol 13 h after its initial injection stimulated a second increase in serum prolactin at 25 h. A single injection of DHT (0.8 mg/kg BW) 1 h before the second estradiol injection blocked the increase in serum prolactin. DHT had no effect on basal serum prolactin levels. The DHT inhibition of estrogen-induced prolactin release required estrogen priming. A dose dependency for the DHT effect was demonstrated, with low doses effective and high doses ineffective, in inhibiting estrogen action. This effect of DHT seemed to be androgen receptor-mediated, since flutamide blocked the effect. However, the possibility of progestin receptor mediation could not be ruled out since RU486 also blocked DHT's effect. Flutamide was also effective in blocking progesterone's inhibition of estrogen-induced action. This is perhaps consistent with an overlap of activities in androgens and progestins reported by several investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The specific pharmacological profile of the 19-norprogestin nomegestrol acetate (NOMAC) is, at least in part, defined by its pattern of binding affinities to the different steroid hormone receptors. In the present study, its affinity to the progesterone receptor (PgR), the androgen receptor (AR) and the estrogen receptor (ER) was re-evaluated and compared to those obtained for progesterone (P) and several progestins. The characteristics of binding to the PgR in rat uterus were determined and Ki were found to be roughly similar with 22.8 and 34.3 nM for NOMAC and P, respectively. The binding characteristics of 3H-NOMAC were also determined and compared to that of 3H-ORG2058 with Kd of 5 and 0.6 nM, respectively for rat uterus and 4 and 3 nM, respectively for human T47-D cells. Structure-affinity and -activity relationships were studied on a variety of compounds related to NOMAC in order to assess its specificity as a progestin. The effects of NOMAC on the binding of androgen to the AR were investigated, using rat ventral prostate as target model. Contrary to what was observed for MPA, the RBA of NOMAC was found to decline with time, showing anti-androgenic rather than androgenic potential, a result that was confirmed in vivo. Regarding the ER, since none of the progestins were able to compete with estrogen for binding in rat uterus as well as in Ishikawa cells, the induction of alkaline phosphatase activity (APase) was used as an estrogen-specific response. It confirmed the intrinsic estrogenicity of progestins derived from 19-nor-testosterone (19NT), norethisterone acetate (NETA), levonorgestrel (LNG) or norgestimate (NGM) and others. In contrast, all P and 19-norP derivatives remained inactive. Finally, to complete this overview of NOMAC at the sex steroid receptor levels, the lack of estrogenic or estrogenic-like activity was checked out in different in vitro models. Data from this study have demonstrated that NOMAC is a progestin that has greater steroid receptor selectivity compared to MPA or some other synthetic progestins. It may provide a better pharmacological profile than those progestins currently in use in HRT and OC.  相似文献   

18.
Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant (p less than 0.05) drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant (p less than 0.05) increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy.  相似文献   

19.
The increased use of hormonal therapies over the last years has led to improve the knowledge of pharmacological, biochemical and metabolic properties of several progestins and their effects in target tissues, such as the central nervous system. Progesterone and synthetic progestational agents are able to modulate the synthesis and release of several neurotransmitters and neuropeptides in response to specific physiological and pathological stimuli. While these actions may relay on differential activation of progesterone receptor or recruitment of intracellular pathways, some of the differences found between synthetic progestins may depend on the specific conversion to neuroactive steroids, such as the 3-, 5- reduced metabolite, allopregnanolone. This is a potent endogenous steroid that rapidly affects the excitability of neurons and glia cells through direct modulation of the GABA-A receptors activity exerting hypnotic/sedative, anxiolytic, anaesthetic and anticonvulsive properties. Estrogens increase the CNS and serum levels of allopregnanolone and the addition of certain but not all synthetic progestins determines a further increase in allopregnanolone levels, suggesting that the metabolism into this reduced product is related to the chemical structure of progestin molecule used. In addition, depending on specific progestin molecule used, different interaction are found with the estradiol-induced beta-endorphin synthesis and release, showing that diverse progestins have specific and divergent actions on the opiatergic system. These results highlight the concept that natural and synthetic progesterone receptor agonists may systematically induce different biological actions in CNS. This may have far-reaching implications for the clinical effects and related indications of each compound.  相似文献   

20.
MPA and postmenopausal coronary artery atherosclerosis revisited   总被引:1,自引:0,他引:1  
Clarkson TB  Appt SE 《Steroids》2003,68(10-13):941-951
Whether progestins, particularly medroxyprogesterone acetate (MPA), attenuate the cardiovascular benefits of postmenopausal estrogen replacement therapy (ERT) has been controversial for over a decade. Concerns related first to findings that MPA attenuated increases of high density lipoprotein cholesterol (HDLC) concentrations of postmenopausal women compared to conjugated equine estrogen (CEE) alone. That observation was followed by early cynomolgus monkey studies that suggested MPA decreased estrogen's cardiovascular benefits (vascular reactivity and coronary artery atherosclerosis inhibition). In a more recent and larger trial with cynomolgus monkeys, no differences were seen in the coronary artery atherosclerosis protective effect of CEE when MPA was co-administered (HRT). The lack of attenuation of ERTs benefits by progestins has also been seen in at least three studies of carotid artery intima-media thickness (IMT) of postmenopausal women. Additionally, the majority of studies of vascular reactivity of postmenopausal women have not found differences when CEE is given alone or with MPA. Seven observational studies of cardiovascular outcomes of postmenopausal women permit separate consideration of ERT versus HRT use; there is no evidence of attenuation of ERTs benefits by progestin use. In conclusion, it is evident that the current experimental, clinical, and observational data do not provide evidence that progestins attenuate estrogen's cardiovascular benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号