首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of the cytotoxic endonuclease domain from the bacterial toxin colicin E9 in complex with its cognate immunity protein Im9 reveals that the inhibitor does not bind at the active site, the core of which comprises the HNH motif found in intron-encoded homing endonucleases, but rather at an adjacent position leaving the active site exposed yet unable to bind DNA because of steric and electrostatic clashes with incoming substrate. Although its mode of action is unorthodox, Im9 is a remarkably effective inhibitor since it folds within milliseconds and then associates with its target endonuclease at the rate of diffusion to form an inactive complex with sub-femtomolar binding affinity. This hyperefficient mechanism of inhibition could be well suited to other toxic enzyme systems, particularly where the substrate is a polymer extending beyond the boundaries of the active site.  相似文献   

2.
Colicin E9 is a microbial toxin that kills bacteria through random degradation of chromosomal DNA. Within the active site of the cytotoxic endonuclease domain of colicin E9 (the E9 DNase) is a 32 amino acid motif found in the H-N-H group of homing endonucleases. Crystal structures of the E9 DNase have implicated several conserved residues of the H-N-H motif in the mechanism of DNA hydrolysis. We have used mutagenesis to test the involvement of these key residues in colicin toxicity, metal ion binding and catalysis. Our data show, for the first time, that the H-N-H motif is the site of DNA binding and that Mg2+-dependent cleavage of double-stranded DNA is responsible for bacterial cell death. We demonstrate that more active site residues are required for catalysis in the presence of Mg2+ ions than transition metals, consistent with the recent hypothesis that the E9 DNase hydrolyses DNA by two distinct, cation-dependent catalytic mechanisms. The roles of individual amino acids within the H-N-H motif are discussed in the context of the available structural information on this and related DNases and we address the possible mechanistic similarities between caspase-activated DNases, responsible for the degradation of chromatin in eukaryotic apoptosis, and H-N-H DNases.  相似文献   

3.
BACKGROUND: The cytotoxicity of most ribonuclease E colicins towards Escherichia coli arises from their ability to specifically cleave between bases 1493 and 1494 of 16S ribosomal RNA. This activity is carried by the C-terminal domain of the colicin, an activity which if left unneutralised would lead to destruction of the producing cell. To combat this the host E. coli cell produces an inhibitor protein, the immunity protein, which forms a complex with the ribonuclease domain effectively suppressing its activity. RESULTS: We have solved the crystal structure of the cytotoxic domain of the ribonuclease colicin E3 in complex with its immunity protein, Im3. The structure of the ribonuclease domain, the first of its class, reveals a highly twisted central beta-sheet elaborated with a short N-terminal helix, the residues of which form a well-packed interface with the immunity protein. CONCLUSIONS: The structure of the ribonuclease domain of colicin E3 is novel and forms an interface with its inhibitor which is significantly different in character to that reported for the DNase colicin complexes with their immunity proteins. The structure also gives insight into the mode of action of this class of enzymatic colicins by allowing the identification of potentially catalytic residues. This in turn reveals that the inhibitor does not bind at the active site but rather at an adjacent site, leaving the catalytic centre exposed in a fashion similar to that observed for the DNase colicins. Thus, E. coli appears to have evolved similar methods for ensuring efficient inhibition of the potentially destructive effects of the two classes of enzymatic colicins.  相似文献   

4.
Nuclease type colicins and related bacteriocins possess the unprecedented ability to translocate an enzymatic polypeptide chain across the Gram-negative cell envelope. Here we use the rRNase domain of the cytotoxic ribonuclease colicin E3 to examine the structural changes on its interaction with the membrane. Using phospholipid vesicles as model membranes we show that anionic membranes destabilize the nuclease domain of the rRNase type colicin E3. Intrinsic tryptophan fluorescence and circular dichroism show that vesicles consisting of pure DOPA act as a powerful protein denaturant toward the rRNase domain, although this interaction can be entirely prevented by the addition of salt. Binding of E3 rRNase to DOPA vesicles is an endothermic process (DeltaH=24 kcal mol-1), reflecting unfolding of the protein. Consistent with this, binding of a highly destabilized mutant of the E3 rRNase to DOPA vesicles is exothermic. With mixed vesicles containing anionic and neutral phospholipids at a ratio of 1:3, set to mimic the charge of the Escherichia coli inner membrane, destabilization of E3 rRNase is lessened, although the melting temperature of the protein at pH 7.0 is greatly reduced from 50 degrees C to 30 degrees C. The interaction of E3 rRNase with 1:3 DOPA:DOPC vesicles is also highly dependent on both ionic strength and temperature. We discuss these results in terms of the likely interaction of the E3 rRNase and the related E9 DNase domains with the E. coli inner membrane and their subsequent translocation to the cell cytoplasm.  相似文献   

5.
Bacteria producing endonuclease colicins are protected against their cytotoxic activity by virtue of a small immunity protein that binds with high affinity and specificity to inactivate the endonuclease. DNase binding by the immunity protein occurs through a "dual recognition" mechanism in which conserved residues from helix III act as the binding-site anchor, while variable residues from helix II define specificity. We now report the 1.7 A crystal structure of the 24.5 kDa complex formed between the endonuclease domain of colicin E9 and its cognate immunity protein Im9, which provides a molecular rationale for this mechanism. Conserved residues of Im9 form a binding-energy hotspot through a combination of backbone hydrogen bonds to the endonuclease, many via buried solvent molecules, and hydrophobic interactions at the core of the interface, while the specificity-determining residues interact with corresponding specificity side-chains on the enzyme. Comparison between the present structure and that reported recently for the colicin E7 endonuclease domain in complex with Im7 highlights how specificity is achieved by very different interactions in the two complexes, predominantly hydrophobic in nature in the E9-Im9 complex but charged in the E7-Im7 complex. A key feature of both complexes is the contact between a conserved tyrosine residue from the immunity proteins (Im9 Tyr54) with a specificity residue on the endonuclease directing it toward the specificity sites of the immunity protein. Remarkably, this tyrosine residue and its neighbour (Im9 Tyr55) are the pivots of a 19 degrees rigid-body rotation that relates the positions of Im7 and Im9 in the two complexes. This rotation does not affect conserved immunity protein interactions with the endonuclease but results in different regions of the specificity helix being presented to the enzyme.  相似文献   

6.
Walker D  Moore GR  James R  Kleanthous C 《Biochemistry》2003,42(14):4161-4171
Colicin E3 is a 60 kDa, multidomain protein antibiotic that targets its ribonuclease activity to an essential region of the 16S ribosomal RNA of Escherichia coli. To prevent suicide of the producing cell, synthesis of the toxin is accompanied by the production of a 10 kDa immunity protein (Im3) that binds strongly to the toxin and abolishes its enzymatic activity. In the present work, we study the interaction of Im3 with the isolated cytotoxic domain (E3 rRNase) and intact colicin E3 through presteady-state kinetics and thermodynamic measurements. The isolated E3 rRNase domain forms a high affinity complex with Im3 (K(d) = 10(-12) M, in 200 mM NaCl at pH 7.0 and 25 degrees C). The interaction of Im3 with full-length colicin E3 under the same conditions is however significantly stronger (K(d) = 10(-14) M). The difference in affinity arises almost wholly from a marked decrease in the dissociation rate constant for the full-length complex (8 x 10(-7) s(-1)) relative to the E3 rRNase-Im3 complex (1 x 10(-4) s(-1)), with their association rates comparable ( approximately 10(8) M(-1) s(-1)). Thermodynamic measurements show that complex formation is largely enthalpy driven. In light of the recently published crystal structure of the colicin E3-Im3 complex, the additional stabilization of the wild-type complex can be ascribed to the interaction of Im3 with the N-terminal translocation domain of the toxin. These observations suggest a mechanism whereby dissociation of the immunity protein prior to translocation into the target cell is facilitated by the loss of the Im3-translocation domain interaction.  相似文献   

7.
Colicin E3 is a cytotoxic ribonuclease that specifically cleaves 16S rRNA at the ribosomal A-site to abolish protein synthesis in sensitive Escherichia coli cells. We have performed extensive mutagenesis of the 96-residue colicin E3 cytotoxic domain (E3 rRNase), assayed mutant colicins for in vivo cytotoxicity, and tested the corresponding E3 rRNase domains for their ability to inactivate ribosome function in vitro. From 21 alanine mutants, we identified five positions where mutation resulted in a colicin with no measurable cytotoxicity (Y52, D55, H58, E62, and Y64) and four positions (R40, R42, E60, and R90) where mutation caused a significant reduction in cytotoxicity. Mutations that were found to have large in vivo and in vitro effects were tested for structural integrity through circular dichroism and fluorescence spectroscopy using purified rRNase domains. Our data indicate that H58 and E62 likely act as the acid-base pair during catalysis with other residues likely involved in transition state stabilization. Both the Y52 and Y64 mutants were found to be highly destabilized and this is the likely origin of the loss of their cytotoxicity. The identification of important active site residues and sequence alignments of known rRNase homologs has allowed us to identify other proteins containing the putative rRNase active site motif. Proteins that contained this active site motif included three hemagglutinin-type adhesins and we speculate that these have evolved to deliver a cytotoxic rRNase into eukaryotic cells during pathogenesis.  相似文献   

8.
Bacteria producing endonuclease colicins are protected against the cytotoxic activity by a small immunity protein that binds with high affinity and specificity to inactivate the endonuclease. This complex is released into the extracellular medium, and the immunity protein is jettisoned upon binding of the complex to susceptible cells. However, it is not known how and at what stage during infection the immunity protein release occurs. Here, we constructed a hybrid immunity protein composed of the enhanced green fluorescent protein (EGFP) fused to the colicin E2 immunity protein (Im2) to enhance its detection. The EGFP-Im2 protein binds the free colicin E2 with a 1:1 stoichiometry and specifically inhibits its DNase activity. The addition of this hybrid complex to susceptible cells reveals that the release of the hybrid immunity protein is a time-dependent process. This process is achieved 20 min after the addition of the complex to the cells. We showed that complex dissociation requires a functional translocon formed by the BtuB protein and one porin (either OmpF or OmpC) and a functional import machinery formed by the Tol proteins. Cell fractionation and protease susceptibility experiments indicate that the immunity protein does not cross the cell envelope during colicin import. These observations suggest that dissociation of the immunity protein occurs at the outer membrane surface and requires full translocation of the colicin E2 N-terminal domain.  相似文献   

9.
We report the first stopped-flow fluorescence analysis of transition metal binding (Co(2+), Ni(2+), Cu(2+), and Zn(2+)) to the H-N-H endonuclease motif within colicin E9 (the E9 DNase). The H-N-H consensus forms the active site core of a number of endonuclease groups but is also structurally homologous to the so-called treble-clef motif, a ubiquitous zinc-binding motif found in a wide variety of metalloproteins. We find that all the transition metal ions tested bind via multistep mechanisms. Binding was further dissected for Ni(2+) and Zn(2+) ions through the use of E9 DNase single tryptophan mutants, which demonstrated that most steps reflect conformational rearrangements that occur after the bimolecular collision, many common to the two metals, while one appears specific to zinc. The kinetically derived equilibrium dissociation constants (K(d)) for transition metal binding to the E9 DNase agree with previously determined equilibrium measurements and so confirm the validity of the derived kinetic mechanisms. Zn(2+) binds tightest to the enzyme (K(d) approximately 10(-)(9) M) but does not support endonuclease activity, whereas the other metals (K(d) approximately 10(-)(6) M) are active in endonuclease assays implying that the additional step seen for Zn(2+) traps the enzyme in an inactive but high affinity state. Metal-induced conformational changes are likely to be a conserved feature of H-N-H/treble clef motif proteins since similar Zn(2+)-induced, multistep binding was observed for other colicin DNases. Moreover, they appear to be independent both of the conformational heterogeneity that is naturally present within the E9 DNase at equilibrium, as well as the conformational changes that accompany the binding of its cognate inhibitor protein Im9.  相似文献   

10.
The cytotoxic domain of the bacteriocin colicin E9 (the E9 DNase) is a nonspecific endonuclease that must traverse two membranes to reach its cellular target, bacterial DNA. Recent structural studies revealed that the active site of colicin DNases encompasses the HNH motif found in homing endonucleases, and bound within this motif a single transition metal ion (either Zn(2+) or Ni(2+)) the role of which is unknown. In the present work we find that neither Zn(2+) nor Ni(2+) is required for DNase activity, which instead requires Mg(2+) ions, but binding transition metals to the E9 DNase causes subtle changes to both secondary and tertiary structure. Spectroscopic, proteolytic, and calorimetric data show that, accompanying the binding of 1 eq of Zn(2+), Ni(2+), or Co(2+), the thermodynamic stability of the domain increased substantially, and that the equilibrium dissociation constant for Zn(2+) was less than or equal to nanomolar, while that for Co(2+) and Ni (2+) was micromolar. Our data demonstrate that the transition metal is not essential for colicin DNase activity but rather serves a structural role. We speculate that the HNH motif has been adapted for use by endonuclease colicins because of its involvement in DNA recognition and because removal of the bound metal ion destabilizes the DNase domain, a likely prerequisite for its translocation across bacterial membranes.  相似文献   

11.
Human angiotensin-converting enzyme (ACE) has two homologous domains, the N and C domains, with differing substrate preferences. X-ray crystal structures of the C and N domains complexed with various inhibitors have allowed identification of active site residues that might be important for the molecular basis of this selectivity. However, it is unclear to what extent the different residues contribute to substrate domain selectivity. Here, cocrystal structures of human testis ACE, equivalent to the C domain, have been determined with two novel C domain-selective ketomethylene inhibitors, (5 S)-5-[( N-benzoyl)amino]-4-oxo-6-phenylhexanoyl- l-tryptophan (kAW) and (5 S)-5-[( N-benzoyl)amino]-4-oxo-6-phenylhexanoyl- l-phenylalanine (kAF). The ketone groups of both inhibitors bind to the zinc ion as a hydrated geminal diolate, demonstrating the ability of the active site to catalyze the formation of the transition state. Moreover, active site residues involved in inhibitor binding have been mutated to their N domain counterparts, and the effect of the mutations on inhibitor binding has been determined. The C domain selectivity of these inhibitors was found to result from interactions between bulky hydrophobic side chain moieties and C domain-specific residues F391, V518, E376, and V380 (numbering of testis ACE). Mutation of these residues decreased the affinity for the inhibitors 4-20-fold. T282, V379, E403, D453, and S516 did not contribute individually to C domain-selective inhibitor binding. Further domain-selective inhibitor design should focus on increasing both the affinity and selectivity of the side chain moieties.  相似文献   

12.
Background: Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition.Results: The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 Å resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel α/β fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (α11–loop12–α21; where 1 represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23–α31–loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7.Conclusions: The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site.  相似文献   

13.
Quinlan RJ  Reinhart GD 《Biochemistry》2006,45(38):11333-11341
Differences between the crystal structures of inhibitor-bound and uninhibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphoenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits simultaneously containing two different extrinsic fluorophores in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel fluorescence correlation spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor binding because binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated.  相似文献   

14.
The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit and a stimulatory subunit. Structure-function analysis of the catalytic subunit by alanine scanning and conservative substitutions (49 mutations at 25 amino acids) identified 12 functional groups essential for methyltransferase activity in vivo, most of which were essential for cap methylation in vitro. Defects in cap binding were demonstrated for a subset of lethal mutants that displayed residual activity in vitro. We discuss our findings in light of a model of the Michaelis complex derived from crystal structures of AdoHcy-bound vaccinia cap methyltransferase and GTP-bound cellular cap methyltransferase. The structure-function data yield a coherent picture of the vaccinia cap methyltransferase active site and the determinants of substrate specificity and affinity.  相似文献   

15.
The initiation of coagulation results from the activation of factor X by an enzyme complex (Xase) composed of the trypsin-like serine proteinase, factor VIIa, bound to tissue factor (TF) on phospholipid membranes. We have investigated the basis for the protein substrate specificity of Xase using TF reconstituted into vesicles of phosphatidylcholine, phosphatidylserine, or pure phosphatidylcholine. We show that occupation of the active site of VIIa within Xase by a reversible inhibitor or an alternate peptidyl substrate is sufficient to exclude substrate interactions at the active site but does not alter the affinity of Xase for factor X. This is evident as classical competitive inhibition of peptidyl substrate cleavage but as classical noncompetitive inhibition of factor X activation by active site-directed ligands. This implies that the productive recognition of factor X by Xase arises from a multistep reaction requiring an initial interaction at sites on the enzyme complex distinct from the active site (exosites), followed by active site interactions and bond cleavage. Exosite interactions determine protein substrate affinity, whereas the second binding step influences the maximum catalytic rate for the reaction. We also show that competitive inhibition can be achieved by interfering with exosite binding using factor X derivatives that are expected to have limited or abrogated interactions with the active site of VIIa within Xase. Thus, substrate interactions at exosites, sites removed from the active site of VIIa within the enzyme complex, determine affinity and binding specificity in the productive recognition of factor X by the VIIa-TF complex. This may represent a prevalent strategy through which distinctive protein substrate specificities are achieved by the homologous enzymes of coagulation.  相似文献   

16.

Background

Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases) or RNA (RNases) hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin nuclease domains, we have analysed the membrane association of four DNase domains (E9, a charge reduction E9 mutant, E8, and E7) and one ribosomal RNase domain (E3) using a biomembrane model system.

Principal Results

We demonstrate, through the use of large unilamellar vesicles composed of synthetic and E. coli lipids and a membrane surface potential sensor, that the colicin nuclease domains bind anionic membranes only, with micromolar affinity and via a cooperative binding mechanism. The evaluation of the nuclease bilayer insertion depth, through a fluorescence quenching analysis using brominated lipids, indicates that the nucleases locate to differential regions in the bilayer. Colicin DNases target the interfacial region of the lipid bilayer, with the DNase E7 showing the deepest insertion, whereas the ribosomal RNase E3 penetrates into the hydrophobic core region of the bilayer. Furthermore, the membrane association of the DNase E7 and the ribosomal RNase E3 induces vesicle aggregation, lipid mixing and content leakage to a much larger extent than that of the other DNases analysed.

Conclusions/Significance

Our results show, for the first time, that after the initial electrostatically driven membrane association, the pleiotropic membrane effects induced by colicin nuclease domains relate to their bilayer insertion depth and may be linked to their in vivo membrane translocation.  相似文献   

17.
Colicin endonucleases (DNases) are bound and inactivated by immunity (Im) proteins. Im proteins are broadly cross-reactive yet specific inhibitors binding cognate and non-cognate DNases with Kd values that vary between 10− 4 and 10− 14 M, characteristics that are explained by a ‘dual-recognition’ mechanism. In this work, we addressed for the first time the energetics of Im protein recognition by colicin DNases through a combination of E9 DNase alanine scanning and double-mutant cycles (DMCs) coupled with kinetic and calorimetric analyses of cognate Im9 and non-cognate Im2 binding, as well as computational analysis of alanine scanning and DMC data. We show that differential ΔΔGs observed for four E9 DNase residues cumulatively distinguish cognate Im9 association from non-cognate Im2 association. E9 DNase Phe86 is the primary specificity hotspot residue in the centre of the interface, which is coordinated by conserved and variable hotspot residues of the cognate Im protein. Experimental DMC analysis reveals that only modest coupling energies to Im9 residues are observed, in agreement with calculated DMCs using the program ROSETTA and consistent with the largely hydrophobic nature of E9 DNase-Im9 specificity contacts. Computed values for the 12 E9 DNase alanine mutants showed reasonable agreement with experimental ΔΔG data, particularly for interactions not mediated by interfacial water molecules. ΔΔG predictions for residues that contact buried water molecules calculated using solvated rotamer models met with mixed success; however, we were able to predict with a high degree of accuracy the location and energetic contribution of one such contact. Our study highlights how colicin DNases are able to utilise both conserved and variable amino acids to distinguish cognate from non-cognate Im proteins, with the energetic contributions of the conserved residues modulated by neighbouring specificity sites.  相似文献   

18.
The presenilin genes were first identified as the site of missense mutations causing early onset autosomal dominant familial Alzheimer's disease. Subsequent work has shown that the presenilin proteins are the catalytic subunits of a hetero-tetrameric complex containing APH1, nicastrin and PEN-2. This complex (variously termed presenilin complex or gamma-secretase complex) performs an unusual type of proteolysis in which the transmembrane domains of Type I proteins are cleaved within the hydrophobic compartment of the membrane. This review describes some of the molecular and structural biology of this unusual enzyme complex. The presenilin complex is a bilobed structure. The head domain contains the ectodomain of nicastrin. The base domain contains a central cavity with a lateral cleft that likely provides the route for access of the substrate to the catalytic cavity within the centre of the base domain. There are reciprocal allosteric interactions between various sites in the complex that affect its function. For instance, binding of Compound E, a peptidomimetic inhibitor to the PS1 N-terminus, induces significant conformational changes that reduces substrate binding at the initial substrate docking site, and thus inhibits substrate cleavage. However, there is a reciprocal allosteric interaction between these sites such that prior binding of the substrate to the initial docking site paradoxically increases the binding of the Compound E peptidomimetic inhibitor. Such reciprocal interactions are likely to form the basis of a gating mechanism that underlies access of substrate to the catalytic site. An increasingly detailed understanding of the structural biology of the presenilin complex is an essential step towards rational design of substrate- and/or cleavage site-specific modulators of presenilin complex function.  相似文献   

19.
The antibacterial activity of E colicin endonucleases (DNases) is counteracted by the binding of immunity proteins; the affinities of cognate and non-cognate complexes differing by up to ten orders of magnitude. Here, we address the mechanism of complex formation using a combination of protein engineering, pre-steady-state kinetics and isothermal titration calorimetry, in order to understand the underlying basis for specificity. Contrary to previous work, we show that a pre-equilibrium mechanism does not explain the binding kinetics. Instead, the data are best explained by a modified induced-fit mechanism where cognate and non-cognate complexes alike form a non-specific, conformationally dynamic encounter complex, most likely centred on conserved interactions at the interface. The dynamics appear to be an intrinsic property of the encounter complex where the proteins move relative to one another, thereby sampling different conformations rather than being "induced" by binding. This allows optimal alignment of interface specificity sites, without producing energetically costly conformational changes, essential for high-affinity binding. Importantly, specificity is achieved without slowing the rate of association, an important requirement for rapid inhibition of the colicin in the producing bacterial cell. A rigid-body rotation model is also consistent with the observation that specificity contacts in colicin-immunity protein complexes can involve different regions of the interface. Such a kinetic discrimination mechanism explains the ability of DNase-specific immunity proteins to display dual recognition specificity, wherein they are broadly cross-reactive yet are highly specific, achieving femtomolar binding affinities in complexes with their cognate DNases.  相似文献   

20.
In this study we examine for the first time the roles of the various domains of human RNase H1 by site-directed mutagenesis. The carboxyl terminus of human RNase H1 is highly conserved with Escherichia coli RNase H1 and contains the amino acid residues of the putative catalytic site and basic substrate-binding domain of the E. coli RNase enzyme. The amino terminus of human RNase H1 contains a structure consistent with a double-strand RNA (dsRNA) binding motif that is separated from the conserved E. coli RNase H1 region by a 62-amino acid sequence. These studies showed that although the conserved amino acid residues of the putative catalytic site and basic substrate-binding domain are required for RNase H activity, deletion of either the catalytic site or the basic substrate-binding domain did not ablate binding to the heteroduplex substrate. Deletion of the region between the dsRNA-binding domain and the conserved E. coli RNase H1 domain resulted in a significant loss in the RNase H activity. Furthermore, the binding affinity of this deletion mutant for the heteroduplex substrate was approximately 2-fold tighter than the wild-type enzyme suggesting that this central 62-amino acid region does not contribute to the binding affinity of the enzyme for the substrate. The dsRNA-binding domain was not required for RNase H activity, as the dsRNA-deletion mutants exhibited catalytic rates approximately 2-fold faster than the rate observed for wild-type enzyme. Comparison of the dissociation constant of human RNase H1 and the dsRNA-deletion mutant for the heteroduplex substrate indicates that the deletion of this region resulted in a 5-fold loss in binding affinity. Finally, comparison of the cleavage patterns exhibited by the mutant proteins with the cleavage pattern for the wild-type enzyme indicates that the dsRNA-binding domain is responsible for the observed strong positional preference for cleavage exhibited by human RNase H1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号