首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Insulin receptor substrate (IRS) proteins are key moderators of insulin action. Their specific regulation determines downstream protein-protein interactions and confers specificity on growth factor signalling. Regulatory mechanisms that have been identified include phosphorylation of IRS proteins on tyrosine and serine residues and ubiquitination of lysine residues. This study investigated other potential molecular mechanisms of IRS-1 regulation.  相似文献   

2.

Background  

It is well known that most of the binding free energy of protein interaction is contributed by a few key hot spot residues. These residues are crucial for understanding the function of proteins and studying their interactions. Experimental hot spots detection methods such as alanine scanning mutagenesis are not applicable on a large scale since they are time consuming and expensive. Therefore, reliable and efficient computational methods for identifying hot spots are greatly desired and urgently required.  相似文献   

3.

Background  

A large number of PROSITE patterns select false positives and/or miss known true positives. It is possible that – at least in some cases – the weak specificity and/or sensitivity of a pattern is due to the fact that one, or maybe more, functional and/or structural key residues are not represented in the pattern. Multiple sequence alignments are commonly used to build functional sequence patterns. If residues structurally conserved in proteins sharing a function cannot be aligned in a multiple sequence alignment, they are likely to be missed in a standard pattern construction procedure.  相似文献   

4.

Background  

The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs). In the present study, nuclear magnetic resonance (NMR) was used to map the binding site(s) of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction.  相似文献   

5.

Background  

Some amino acid residues functionally interact with each other. This interaction will result in an evolutionary co-variation between these residues – coevolution. Our goal is to find these coevolving residues.  相似文献   

6.

Background  

Depending on chemical features residues have preferred locations – interior or exterior – in protein structures, which also determine how many other residues are found around them. The close packing of residues is the hallmark of protein interior and protein-protein interaction sites.  相似文献   

7.

Background  

Proteins that evolve from a common ancestor can change functionality over time, and it is important to be able identify residues that cause this change. In this paper we show how a supervised multivariate statistical method, Between Group Analysis (BGA), can be used to identify these residues from families of proteins with different substrate specifities using multiple sequence alignments.  相似文献   

8.

Introduction  

The TAM (tyro 3, axl, mer) kinases are key regulators of innate immunity and are important in the phagocytosis of apoptotic cells. Gas6 and protein S are ligands for these TAM kinases and bind to phosphatidyl serine residues exposed during apoptosis. In animal models, absence of TAM kinases is associated with lupus-like disease. To test whether human systemic lupus erythematosus (SLE) patients might have deficient levels of TAM ligands, we measured Gas 6 and protein S levels in SLE.  相似文献   

9.

Background  

The Arg-Gly-Asp (RGD) cell adhesion sequence occurs in several extracellular matrix molecules known to interact with integrin cell-surface receptors. Recently published crystal structures of the extracellular regions of two integrins in complex with peptides containing or mimicking the RGD sequence have identified the Arg and Asp residues as key specificity determinants for integrin recognition, through hydrogen bonding and metal coordination interactions. The central Gly residue also appears to be in close contact with the integrin surface in these structures.  相似文献   

10.

Background  

Biological evolution conserves protein residues that are important for structure and function. Both protein stability and function often require a certain degree of structural co-operativity between spatially neighboring residues and it has previously been shown that conserved residues occur clustered together in protein tertiary structures, enzyme active sites and protein-DNA interfaces. Residues comprising protein interfaces are often more conserved compared to those occurring elsewhere on the protein surface. We investigate the extent to which conserved residues within protein-protein interfaces are clustered together in three-dimensions.  相似文献   

11.

Background  

A multiple sequence alignment (MSA) generated for a protein can be used to characterise residues by means of a statistical analysis of single columns. In addition to the examination of individual positions, the investigation of co-variation of amino acid frequencies offers insights into function and evolution of the protein and residues.  相似文献   

12.

Background  

The alignment of two or more protein sequences provides a powerful guide in the prediction of the protein structure and in identifying key functional residues, however, the utility of any prediction is completely dependent on the accuracy of the alignment. In this paper we describe a suite of reference alignments derived from the comparison of protein three-dimensional structures together with evaluation measures and software that allow automatically generated alignments to be benchmarked. We test the OXBench benchmark suite on alignments generated by the AMPS multiple alignment method, then apply the suite to compare eight different multiple alignment algorithms. The benchmark shows the current state-of-the art for alignment accuracy and provides a baseline against which new alignment algorithms may be judged.  相似文献   

13.

Background  

Understanding the molecular details of protein-DNA interactions is critical for deciphering the mechanisms of gene regulation. We present a machine learning approach for the identification of amino acid residues involved in protein-DNA interactions.  相似文献   

14.

Background  

Discriminating membrane proteins based on their functions is an important task in genome annotation. In this work, we have analyzed the characteristic features of amino acid residues in membrane proteins that perform major functions, such as channels/pores, electrochemical potential-driven transporters and primary active transporters.  相似文献   

15.

Background  

Accessible surface area (ASA) or solvent accessibility of amino acids in a protein has important implications. Knowledge of surface residues helps in locating potential candidates of active sites. Therefore, a method to quickly see the surface residues in a two dimensional model would help to immediately understand the population of amino acid residues on the surface and in the inner core of the proteins.  相似文献   

16.

Background  

Identifying the catalytic residues in enzymes can aid in understanding the molecular basis of an enzyme's function and has significant implications for designing new drugs, identifying genetic disorders, and engineering proteins with novel functions. Since experimentally determining catalytic sites is expensive, better computational methods for identifying catalytic residues are needed.  相似文献   

17.

Background  

The study of functional subfamilies of protein domain families and the identification of the residues which determine substrate specificity is an important question in the analysis of protein domains. One way to address this question is the use of clustering methods for protein sequence data and approaches to predict functional residues based on such clusterings. The locations of putative functional residues in known protein structures provide insights into how different substrate specificities are reflected on the protein structure level.  相似文献   

18.

Background  

Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity.  相似文献   

19.

Background  

Protein function is often dependent on subsets of solvent-exposed residues that may exist in a similar three-dimensional configuration in non homologous proteins thus having different order and/or spacing in the sequence. Hence, functional annotation by means of sequence or fold similarity is not adequate for such cases.  相似文献   

20.

Background  

Human ART4, carrier of the GPI-(glycosyl-phosphatidylinositol) anchored Dombrock blood group antigens, is an apparently inactive member of the mammalian mono-ADP-ribosyltransferase (ART) family named after the enzymatic transfer of a single ADP-ribose moiety from NAD+ to arginine residues of extracellular target proteins. All known mammalian ART4 orthologues are predicted to lack ART activity because of one or more changes in essential active site residues that make up the R-S-EXE motif. So far, no other function has been detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号