首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microarrays have thousands to tens-of-thousands of gene features, but only a few hundred patient samples are available. The fundamental problem in microarray data analysis is identifying genes whose disruption causes congenital or acquired disease in humans. In this paper, we propose a new evolutionary method that can efficiently select a subset of potentially informative genes for support vector machine (SVM) classifiers. The proposed evolutionary method uses SVM with a given subset of gene features to evaluate the fitness function, and new subsets of features are selected based on the estimates of generalization error of SVMs and frequency of occurrence of the features in the evolutionary approach. Thus, in theory, selected genes reflect to some extent the generalization performance of SVM classifiers. We compare our proposed method with several existing methods and find that the proposed method can obtain better classification accuracy with a smaller number of selected genes than the existing methods.  相似文献   

2.
MOTIVATION: The success of each method of cluster analysis depends on how well its underlying model describes the patterns of expression. Outlier-resistant and distribution-insensitive clustering of genes are robust against violations of model assumptions. RESULTS: A measure of dissimilarity that combines advantages of the Euclidean distance and the correlation coefficient is introduced. The measure can be made robust using a rank order correlation coefficient. A robust graphical method of summarizing the results of cluster analysis and a biological method of determining the number of clusters are also presented. These methods are applied to a public data set, showing that rank-based methods perform better than log-based methods. AVAILABILITY: Software is available from http://www.davidbickel.com.  相似文献   

3.
Many clustering methods require that the number of clusters believed present in a given data set be specified a priori, and a number of methods for estimating the number of clusters have been developed. However, the selection of the number of clusters is well recognized as a difficult and open problem and there is a need for methods which can shed light on specific aspects of the data. This paper adopts a model for clustering based on a specific structure for a similarity matrix. Publicly available gene expression data sets are analyzed to illustrate the method and the performance of our method is assessed by simulation.  相似文献   

4.
Y Peng  Y Zhang  G Kou  Y Shi 《PloS one》2012,7(7):e41713
Determining the number of clusters in a data set is an essential yet difficult step in cluster analysis. Since this task involves more than one criterion, it can be modeled as a multiple criteria decision making (MCDM) problem. This paper proposes a multiple criteria decision making (MCDM)-based approach to estimate the number of clusters for a given data set. In this approach, MCDM methods consider different numbers of clusters as alternatives and the outputs of any clustering algorithm on validity measures as criteria. The proposed method is examined by an experimental study using three MCDM methods, the well-known clustering algorithm-k-means, ten relative measures, and fifteen public-domain UCI machine learning data sets. The results show that MCDM methods work fairly well in estimating the number of clusters in the data and outperform the ten relative measures considered in the study.  相似文献   

5.
An XML-based Java application is described that provides a function-oriented overview of the results of cluster analysis of gene-expression microarray data based on Gene Ontology terms and associations. The application generates one HTML page with listings of the frequencies of explicit and implicit Gene Ontology annotations for each cluster, and separate, linked pages with listings of explicit annotations for each gene in a cluster.  相似文献   

6.
We present a new R package for the assessment of the reliability of clusters discovered in high-dimensional DNA microarray data. The package implements methods based on random projections that approximately preserve distances between examples in the projected subspaces.  相似文献   

7.
Cluster Identification Tool (CIT) is a microarray analysis program that identifies differentially expressed genes. Following division of experimental samples based on a parameter of interest, CIT uses a statistical discrimination metric and permutation analysis to identify clusters of genes or individual genes that best differentiate between the experimental groups. CIT integrates with the freely available CLUSTER and TREEVIEW programs to form a more complete microarray analysis package.  相似文献   

8.
9.
Statistical analysis of microarray data: a Bayesian approach   总被引:2,自引:0,他引:2  
The potential of microarray data is enormous. It allows us to monitor the expression of thousands of genes simultaneously. A common task with microarray is to determine which genes are differentially expressed between two samples obtained under two different conditions. Recently, several statistical methods have been proposed to perform such a task when there are replicate samples under each condition. Two major problems arise with microarray data. The first one is that the number of replicates is very small (usually 2-10), leading to noisy point estimates. As a consequence, traditional statistics that are based on the means and standard deviations, e.g. t-statistic, are not suitable. The second problem is that the number of genes is usually very large (approximately 10,000), and one is faced with an extreme multiple testing problem. Most multiple testing adjustments are relatively conservative, especially when the number of replicates is small. In this paper we present an empirical Bayes analysis that handles both problems very well. Using different parametrizations, we develop four statistics that can be used to test hypotheses about the means and/or variances of the gene expression levels in both one- and two-sample problems. The methods are illustrated using experimental data with prior knowledge. In addition, we present the result of a simulation comparing our methods to well-known statistics and multiple testing adjustments.  相似文献   

10.
11.
Huang HL  Chang FL 《Bio Systems》2007,90(2):516-528
An optimal design of support vector machine (SVM)-based classifiers for prediction aims to optimize the combination of feature selection, parameter setting of SVM, and cross-validation methods. However, SVMs do not offer the mechanism of automatic internal relevant feature detection. The appropriate setting of their control parameters is often treated as another independent problem. This paper proposes an evolutionary approach to designing an SVM-based classifier (named ESVM) by simultaneous optimization of automatic feature selection and parameter tuning using an intelligent genetic algorithm, combined with k-fold cross-validation regarded as an estimator of generalization ability. To illustrate and evaluate the efficiency of ESVM, a typical application to microarray classification using 11 multi-class datasets is adopted. By considering model uncertainty, a frequency-based technique by voting on multiple sets of potentially informative features is used to identify the most effective subset of genes. It is shown that ESVM can obtain a high accuracy of 96.88% with a small number 10.0 of selected genes using 10-fold cross-validation for the 11 datasets averagely. The merits of ESVM are three-fold: (1) automatic feature selection and parameter setting embedded into ESVM can advance prediction abilities, compared to traditional SVMs; (2) ESVM can serve not only as an accurate classifier but also as an adaptive feature extractor; (3) ESVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of ESVM for bioinformatics problems.  相似文献   

12.
MOTIVATION: Clustering has been used as a popular technique for finding groups of genes that show similar expression patterns under multiple experimental conditions. Many clustering methods have been proposed for clustering gene-expression data, including the hierarchical clustering, k-means clustering and self-organizing map (SOM). However, the conventional methods are limited to identify different shapes of clusters because they use a fixed distance norm when calculating the distance between genes. The fixed distance norm imposes a fixed geometrical shape on the clusters regardless of the actual data distribution. Thus, different distance norms are required for handling the different shapes of clusters. RESULTS: We present the Gustafson-Kessel (GK) clustering method for microarray gene-expression data. To detect clusters of different shapes in a dataset, we use an adaptive distance norm that is calculated by a fuzzy covariance matrix (F) of each cluster in which the eigenstructure of F is used as an indicator of the shape of the cluster. Moreover, the GK method is less prone to falling into local minima than the k-means and SOM because it makes decisions through the use of membership degrees of a gene to clusters. The algorithmic procedure is accomplished by the alternating optimization technique, which iteratively improves a sequence of sets of clusters until no further improvement is possible. To test the performance of the GK method, we applied the GK method and well-known conventional methods to three recently published yeast datasets, and compared the performance of each method using the Saccharomyces Genome Database annotations. The clustering results of the GK method are more significantly relevant to the biological annotations than those of the other methods, demonstrating its effectiveness and potential for clustering gene-expression data. AVAILABILITY: The software was developed using Java language, and can be executed on the platforms that JVM (Java Virtual Machine) is running. It is available from the authors upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at http://dragon.kaist.ac.kr/gk.  相似文献   

13.
Peng J  Yang J  Jin Q 《PloS one》2011,6(4):e18509

Background

The completion of numerous genome sequences introduced an era of whole-genome study. However, many genes are missed during genome annotation, including small RNAs (sRNAs) and small open reading frames (sORFs). In order to improve genome annotation, we aimed to identify novel sRNAs and sORFs in Shigella, the principal etiologic agents of bacillary dysentery.

Methodology/Principal Findings

We identified 64 sRNAs in Shigella, which were experimentally validated in other bacteria based on sequence conservation. We employed computer-based and tiling array-based methods to search for sRNAs, followed by RT-PCR and northern blots, to identify nine sRNAs in Shigella flexneri strain 301 (Sf301) and 256 regions containing possible sRNA genes. We found 29 candidate sORFs using bioinformatic prediction, array hybridization and RT-PCR verification. We experimentally validated 557 (57.9%) DOOR operon predictions in the chromosomes of Sf301 and 46 (76.7%) in virulence plasmid.We found 40 additional co-expressed gene pairs that were not predicted by DOOR.

Conclusions/Significance

We provide an updated and comprehensive annotation of the Shigella genome. Our study increased the expected numbers of sORFs and sRNAs, which will impact on future functional genomics and proteomics studies. Our method can be used for large scale reannotation of sRNAs and sORFs in any microbe with a known genome sequence.  相似文献   

14.
MOTIVATION: The identification of the change of gene expression in multifactorial diseases, such as breast cancer is a major goal of DNA microarray experiments. Here we present a new data mining strategy to better analyze the marginal difference in gene expression between microarray samples. The idea is based on the notion that the consideration of gene's behavior in a wide variety of experiments can improve the statistical reliability on identifying genes with moderate changes between samples. RESULTS: The availability of a large collection of array samples sharing the same platform in public databases, such as NCBI GEO, enabled us to re-standardize the expression intensity of a gene using its mean and variation in the wide variety of experimental conditions. This approach was evaluated via the re-identification of breast cancer-specific gene expression. It successfully prioritized several genes associated with breast tumor, for which the expression difference between normal and breast cancer cells was marginal and thus would have been difficult to recognize using conventional analysis methods. Maximizing the utility of microarray data in the public database, it provides a valuable tool particularly for the identification of previously unrecognized disease-related genes. AVAILABILITY: A user friendly web-interface (http://compbio.sookmyung.ac.kr/~lage/) was constructed to provide the present large-scale approach for the analysis of GEO microarray data (GS-LAGE server).  相似文献   

15.
SUMMARY: The NetAffx Gene Ontology (GO) Mining Tool is a web-based, interactive tool that permits traversal of the GO graph in the context of microarray data. It accepts a list of Affymetrix probe sets and renders a GO graph as a heat map colored according to significance measurements. The rendered graph is interactive, with nodes linked to public web sites and to lists of the relevant probe sets. The GO Mining Tool provides visualization combining biological annotation with expression data, encompassing thousands of genes in one interactive view. AVAILABILITY: GO Mining Tool is freely available at http://www.affymetrix.com/analysis/query/go_analysis.affx  相似文献   

16.
17.
18.
19.

Background  

Interpretation of comprehensive DNA microarray data sets is a challenging task for biologists and process engineers where scientific assistance of statistics and bioinformatics is essential. Interdisciplinary cooperation and concerted development of software-tools for simplified and accelerated data analysis and interpretation is the key to overcome the bottleneck in data-analysis workflows. This approach is exemplified by gcExplorer an interactive visualization toolbox based on cluster analysis. Clustering is an important tool in gene expression data analysis to find groups of co-expressed genes which can finally suggest functional pathways and interactions between genes. The visualization of gene clusters gives practitioners an understanding of the cluster structure of their data and makes it easier to interpret the cluster results.  相似文献   

20.
Determining the structure of data without prior knowledge of the number of clusters or any information about their composition is a problem of interest in many fields, such as image analysis, astrophysics, biology, etc. Partitioning a set of n patterns in a p-dimensional feature space must be done such that those in a given cluster are more similar to each other than the rest. As there are approximately Kn/K! possible ways of partitioning the patterns among K clusters, finding the best solution is very hard when n is large. The search space is increased when we have no a priori number of partitions. Although the self-organizing feature map (SOM) can be used to visualize clusters, the automation of knowledge discovery by SOM is a difficult task. This paper proposes region-based image processing methods to post-processing the U-matrix obtained after the unsupervised learning performed by SOM. Mathematical morphology is applied to identify regions of neurons that are similar. The number of regions and their labels are automatically found and they are related to the number of clusters in a multivariate data set. New data can be classified by labeling it according to the best match neuron. Simulations using data sets drawn from finite mixtures of p-variate normal densities are presented as well as related advantages and drawbacks of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号