首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雌性生殖细胞发育是动物繁殖的基石,哺乳动物卵母细胞和早期胚胎在其生长发育过程中有许多独特的现象和规律,涉及一系列蛋白质合成/降解和磷酸化等状态的动态改变。对卵母细胞分裂、成熟调控机理以及植入前胚胎发育规律的研究是发育生物学领域的一项重要课题。蛋白质组学是以细胞或组织内全部的蛋白质为研究对象,系统鉴定、定量蛋白质并研究这些蛋白质功能的科学。随着蛋白质分离、鉴定技术的快速发展,蛋白质组学为卵母细胞发生、分化、成熟以及质量控制等相关研究提供了新的方法和内容,如在蛋白质定量、修饰、定位和相互作用等方面提供其他组学技术不可获得的重要信息。这些信息将有助于揭示哺乳动物卵母细胞成熟和早期胚胎发育的分子机制,对于进一步完善卵母细胞的体外成熟培养体系,提高胚胎体外生产、体细胞克隆和转基因动物生产效率具有重要意义。  相似文献   

2.
After birth, oocytes stay at the diplotene stage in prophase of meiosis I. Meiosis resumes about 1 day before ovulation, and arrests in metaphase II (MII) after ovulation. The mature, MII oocytes are then ready for fertilization and to provide materials for early embryonic development. Proteomic characterization of oocytes can help identify proteins that are important for female meiotic maturation and early embryonic development. In this study, we compared the proteomic profiles between the germinal vesicle and MII mouse oocytes by two-dimensional electrophoresis; 95 differentially expressed protein spots corresponding to 63 proteins were identified. Many of these proteins are known to be essential for oocyte meiosis and early embryonic development, such as adenylosuccinate synthetase, nucleoplasmin-2, and protein-arginine deiminase type-6. Of the 12 proteins that were identified and are highly expressed in oocytes, a novel protein, E330034G19Rik, was found to be oocyte-specific. According to analysis by bioinformatics, it may regulate chromosome segregation during meiosis or cleavage. An in-depth study of these proteins will help us better understand the mechanisms of oocyte meiotic maturation, fertilization, and early embryogenesis. It will also help us understand the mechanisms of diseases that stem from abnormal oocyte maturation, such as polycystic ovary syndrome and premature ovary failure.  相似文献   

3.
Actin nucleation factors, which promote the formation of new actin filaments, have emerged in the last decade as key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2, spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions after fertilization is a new area of investigation. Taken together, defining the mechanisms by which actin-binding proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete formation and pre-implantation development.  相似文献   

4.
5.
Meiotic maturation is an intricate and precisely regulated process orchestrated by various pathways and numerous proteins. However, little is known about the proteome landscape during oocytes maturation. Here, we obtained the temporal proteomic profiles of mouse oocytes during in vivo maturation. We successfully quantified 4694 proteins from 4500 oocytes in three key stages (germinal vesicle, germinal vesicle breakdown, and metaphase II). In particular, we discovered the novel proteomic features during oocyte maturation, such as the active Skp1–Cullin–Fbox pathway and an increase in mRNA decay–related proteins. Using functional approaches, we further identified the key factors controlling the histone acetylation state in oocytes and the vital proteins modulating meiotic cell cycle. Taken together, our data serve as a broad resource on the dynamics occurring in oocyte proteome and provide important knowledge to better understand the molecular mechanisms during germ cell development.  相似文献   

6.
Cell–cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm–oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain‐containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm–oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell–cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle.  相似文献   

7.
《遗传学报》2022,49(12):1081-1092
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules, which are widespread in eukaryotic cells. As regulatory molecules, circRNAs have various functions, such as regulating gene expression, binding miRNAs or proteins, and being translated into proteins, which are important for cell proliferation and cell differentiation, individual growth and development, as well as many other biological processes. However, compared with that in animal models, studies of circRNAs in plants lags behind and, particularly, the regulatory mechanisms of biogenesis and molecular functions of plant circRNAs remain elusive. Recent studies have shown that circRNAs are wide spread in plants with tissue- or development-specific expression patterns and are responsive to a variety of environmental stresses. In this review, we summarize these advances, focusing on the regulatory mechanisms of biogenesis, molecular and biological functions of circRNAs, and the methods for investigating circRNAs. We also discuss the challenges and the prospects of plant circRNA studies.  相似文献   

8.
Galectins as modulators of cell adhesion   总被引:31,自引:0,他引:31  
Hughes RC 《Biochimie》2001,83(7):667-676
The galectins are a family of carbohydrate-binding proteins that are distributed widely in metazoan organisms. Each galectin exhibits a specific pattern of expression in various cells and tissues, and expression is often closely regulated during development. Although these proteins are found mainly in the cell cytoplasm, some are secreted from cells and interact with appropriately glycosylated proteins at the cell surface or within the extracellular matrix. These receptors include cell-adhesion molecules such as integrins, and matrix glycoproteins such as laminin and fibronectin isoforms. Recent studies have increased understanding of the roles of the galectins in regulating cell-cell and cell-matrix adhesion. These interactions are critically involved in modulation of normal cellular motility and polarity and during tissue formation, and loss of adhesive function is implicated in several disease states including tumour progression, inflammation and cystic development in branching epithelia such as kidney tubules. This review discusses recent progress in defining the specificities and mechanisms of action of secreted galectins as multifunctional cell regulators.  相似文献   

9.
10.
The accumulation of protein and RNA components of small nuclear U-ribonucleoprotein particles is non-co-ordinate during oogenesis and early embryogenesis in Xenopus laevis. Northern blot hybridization of a cloned Xenopus U2-RNA gene to oocyte and embryo RNAs demonstrates that the amount of small nuclear U2-RNA per oocyte reaches a plateau early in oogenesis (at the start of yolk deposition); further accumulation is not observed in oogenesis, nor in embryogenesis until the late blastula stage. In contrast, we show by immunoblot analysis that the proteins that bind to small nuclear U-RNAs continue to be accumulated after vitellogenesis begins, reaching maximum amounts only at the end of oocyte development. No further accumulation of these proteins is seen during embryogenesis. The consequences of this non-co-ordinate synthesis of small nuclear RNA and small nuclear RNA-binding proteins are as follows: a 10- to 20-fold excess of the protein components of the small ribonucleoprotein particles over small nuclear RNA exists in large oocytes; the bulk of the protein is cytoplasmic, while the RNA is nuclear. Thus the excess protein in the cytoplasm is uncomplexed with RNA. The imbalance between protein and RNA is not corrected until the late blastula or early gastrula stages of embryogenesis, when a tenfold increase in the amount of small nuclear U2-RNA is detected. Thus the protein, but not the RNA, components of small nuclear U-ribonucleoprotein particles are stockpiled in oocytes for later use in embryonic development. During the course of these studies, we also found that there are tissue-specific differences in the Sm-antigenic proteins of X. laevis.  相似文献   

11.
Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.  相似文献   

12.
This paper is a review of the current status of technology for mammalian oocyte growth and development in vitro. It compares and contrasts the characteristics of the various culture systems that have been devised for the culture of either isolated preantral follicles or the oocyte-granulosa cell complexes from preantral follicles. The advantages and disadvantages of these various systems are discussed. Endpoints for the evaluation of oocyte development in vitro, including oocyte maturation and embryogenesis, are described. Considerations for the improvement of the culture systems are also presented. These include discussions of the possible effects of apoptosis and inappropriate differentiation of oocyte-associated granulosa cells on oocyte development. Finally, the potential applications of the technology for oocyte growth and development in vitro are discussed. For example, studies of oocyte development in vitro could help to identify specific molecules produced during oocyte development that are essential for normal early embryogenesis and perhaps recognize defects leading to infertility or abnormalities in embryonic development. Moreover, the culture systems may provide the methods necessary to enlarge the populations of valuable agricultural, pharmaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that place oocytes at risk. © 1996 Wiley-Liss, Inc.  相似文献   

13.
In many insects, development of the oocyte arrests temporarily just before vitellogenesis, the period when vitellogenins (yolk proteins) accumulate in the oocyte. Following hormonal and environmental cues, development of the oocyte resumes, and endocytosis of vitellogenins begins. An essential component of yolk uptake is the vitellogenin receptor. In this report, we describe the ovarian expression pattern and subcellular localization of the mRNA and protein encoded by the Drosophila melanogaster vitellogenin receptor gene yolkless (yl). yl RNA and protein are both expressed very early during the development of the oocyte, long before vitellogenesis begins. RNA in situ hybridization and lacZ reporter analyses show that yl RNA is synthesized by the germ line nurse cells and then transported to the oocyte. Yl protein is evenly distributed throughout the oocyte during the previtellogenic stages of oogenesis, demonstrating that the failure to take up yolk in these early stage oocyte is not due to the absence of the receptor. The transition to the vitellogenic stages is marked by the accumulation of yolk via clathrin-coated vesicles. After this transition, yolk protein receptor levels increase markedly at the cortex of the egg. Consistent with its role in yolk uptake, immunogold labeling of the receptor reveals Yl in endocytic structures at the cortex of wild-type vitellogenic oocytes. In addition, shortly after the inception of yolk uptake, we find multivesicular bodies where the yolk and receptor are distinctly partitioned. By the end of vitellogenesis, the receptor localizes predominantly to the cortex of the oocyte. However, during oogenesis in yl mutants that express full-length protein yet fail to incorporate yolk proteins, the receptor remains evenly distributed throughout the oocyte.  相似文献   

14.
In Xenopus and Drosophila oocytes, a number of maternally synthesized RNAs encoding molecules that act in formation and patterning of embryonic tissues are localized to the vegetal and posterior poles, respectively. In Drosophila, and probably in Xenopus, localization of their RNAs within the oocyte generates the regionalized distributions of these molecules in the early embryo that are required for proper development. Studies described here have begun to reveal components of the cellular machinery that effects RNA localization. While specific aspects of localization differ among RNAs, similarities between pathways used by Xenopus and Drosophila suggest that common themes have been conserved among localization mechanisms.  相似文献   

15.
During development there is a multitude of signaling events governing the assembly of the developing organism. Receptors for signaling molecules such as fibroblast growth factor receptor 2 (FGFR2) enable the embryo to communicate with the surrounding environment and activate downstream pathways. The neural cell adhesion molecule (NCAM) was first characterized as a cell adhesion molecule highly expressed in the nervous system, but recent studies have shown that it is also a signaling receptor. Using a novel single oocyte adaptation of the proximity ligation assay, we here show a close association between NCAM and FGFR2 in mouse oocytes and 2-cell embryos. Real-time PCR analyses revealed the presence of messenger RNA encoding key proteins in downstream signaling pathways in oocytes and early mouse embryos. In summary these findings show a co-localization of NCAM and FGFR2 in early vertebrate development with intracellular signaling pathways present to enable a cellular response.  相似文献   

16.
We have prepared polyclonal antibodies against Xenopus 20S proteasomes. The antibodies cross-react with several proteins that are common to 20S and 26S proteasomes and with at least two proteins that are unique to 26S proteasomes. The antibodies were used to analyze changes in the components of proteasomes during oocyte maturation and early development of Xenopus laevis. A novel protein with a molecular weight of 48 kDa, p48, was clearly detected in immature oocytes, but was found at very low levels in mature oocytes and ovulated eggs. p48 was reduced to low levels during oocyte maturation, after maturation-promoting factor was activated. The amount of p48 in eggs remained low during early embryonic development, but increased again after the midblastula transition. These results show that at least one component of 26S proteasomes changes during oocyte maturation and early development and suggest that alterations in proteasome function may be important for the regulation of developmental events, such as the rapid cell cycles, of the early embryo.  相似文献   

17.
We have prepared polyclonal antibodies againstXenopus20S proteasomes. The antibodies cross-react with several proteins that are common to 20S and 26S proteasomes and with at least two proteins that are unique to 26S proteasomes. The antibodies were used to analyze changes in the components of proteasomes during oocyte maturation and early development ofXenopus laevis.A novel protein with a molecular weight of 48 kDa, p48, was clearly detected in immature oocytes, but was found at very low levels in mature oocytes and ovulated eggs. p48 was reduced to low levels during oocyte maturation, after maturation-promoting factor was activated. The amount of p48 in eggs remained low during early embryonic development, but increased again after the midblastula transition. These results show that at least one component of 26S proteasomes changes during oocyte maturation and early development and suggest that alterations in proteasome function may be important for the regulation of developmental events, such as the rapid cell cycles, of the early embryo.  相似文献   

18.
Autophagic programmed cell death in Drosophila   总被引:5,自引:0,他引:5  
  相似文献   

19.
非编码RNA与基因表达调控   总被引:1,自引:0,他引:1  
近年来,随着对基因组的深入研究,发现真核生物中存在许多形态和功能各异的非编码RNA分子,这类RNA分子并不表达蛋白质,但它们在基因转录水平、转录后水平及翻译水平起了重要的调控作用。具有调控作用的RNA分子种类非常丰富,如长链非编码RNA(long non-coding RNA,lncRNA)、miRNA、PIWI相互作用RNA(PIWI-interacting RNA,piRNA)、内源性小干扰RNA(endogenous small interfering RNA,endo-siRNA)、竞争性内源RNA(competitive endogenous RNA,ceRNA)等,它们使基因表达过程更为丰富、严谨和有序。本文综述几类典型的非编码RNA对基因表达的调节作用,以助于理解细胞中RNA分子调节网络的功能和机制。  相似文献   

20.
In mammals, the final number of oocytes available for reproduction of the next generation is defined at birth. Establishment of this oocyte pool is essential for fertility. Mammalian primordial germ cells form and migrate to the gonad during embryonic development. After arriving at the gonad, the germ cells are called oogonia and develop in clusters of cells called germ line cysts or oocyte nests. Subsequently, the oogonia enter meiosis and become oocytes. The oocyte nests break apart into individual cells and become packaged into primordial follicles. During this time, only a subset of oocytes ultimately survive and the remaining immature eggs die by programmed cell death. This phase of oocyte differentiation is poorly understood but molecules and mechanisms that regulate oocyte development are beginning to be identified. This review focuses on these early stages of female germ cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号