首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
ATP citrate lyase   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
Six different biotinylated radicicol derivatives were synthesized as affinity probes for identification of cellular radicicol-binding proteins. Derivatives biotinylated at the C-17 (BR-1) and C-11 (BR-6) positions retained the activity of morphological reversion in v-src-transformed 3Y1 fibroblasts. Two radicicol-binding proteins, 120 and 90-kDa in size, were detected in HeLa cell extracts by employing BR-1 and BR-6, respectively. The 90-kDa protein bound to BR-6 was identified to be Hsp90 by immunoblotting. The 120-kDa protein bound to BR-1 was purified from rabbit reticulocyte lysate, and its internal amino acid sequence was identical to that of human and rat ATP citrate lyase. The identity of the 120-kDa protein as ATP citrate lyase was confirmed by immunoblotting. Interaction between BR-1 and ATP citrate lyase was blocked by radicicol but not by herbimycin A that interacts with Hsp90. These results suggest that radicicol binds the two proteins through different molecular portions of its structure. BR-1-bound ATP citrate lyase isolated from rabbit reticulocyte lysate showed no enzymatic activity. The activity of rat liver ATP citrate lyase was inhibited by radicicol and BR-1 but not by BR-6. Kinetic analysis demonstrated that radicicol was a non-competitive inhibitor of ATP citrate lyase with K(i) values for citrate and ATP of 13 and 7 microm, respectively.  相似文献   

6.
The inhibition of rat brain ATP: citrate oxaloacetate-lyase by L-glutamate   总被引:3,自引:2,他引:1  
Abstract—
  • 1 Among 16 amino acids tested only D- and L-glutamate were found to be specific inhibitors of citrate lyase from adult rat brain. Glutamate also inhibited citrate lyase from the liver of starved animals while it was without effect on lyase from those refed with carbohydrate. L-Glutamate did not inhibit the citrate lyase from brains of newborn rats.
  • 2 The inhibitory effect of L-glutamate was increased when the time of preincubation was prolonged, but only in the presence of both ATP and MgCl2. This time-dependent inhibition could be reversed by addition of high concentrations of ATP.
  • 3 L-Glutamate was without effect on Km and Vmax values for MgCl2. Excess of Mg2+ ions was indispensable for glutamate inhibition.
  • 4 L-Glutamate was shown to be competitive with respect to the ATP inhibitor of the lyase, with a Ki of 0.3mM.
  • 5 The mechanism of L-glutamate inhibition may be due to the reaction of a glutamate-Mg complex with the phosphorylated intermediary form of the lyase, resulting in the formation of a lyase-glutamate complex.
  • 6 The physiological significance of the inhibitory action of glutamate is discussed.
  相似文献   

7.
The activity of ATP-citrate lyase in homogenates of five selected rat brain regions varied from 2.93 to 6.90 nmol/min/mg of protein in the following order: cerebellum < hippocampus < parietal cortex < striatum < medulla oblongata and that of the choline acetyltransferase from 0.15 to 2.08 nmol/min/mg of protein in cerebellum < parietal cortex < hippocampus=medulla oblongata < striatum. No substantial differences were found in regional activities of lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase or acetyl-CoA synthase. High values of relative specific activities for both choline acetyltransferase and ATP-citrate lyase were found in synaptosomal and synaptoplasmic fractions from regions with a high content of cholinergic nerve endings. There are significant correlations between these two enzyme activities in general cytocol (S3), synaptosomal (B) and synaptoplasmic (Bs) fractions from the different regions (r=0.92–0.99). These data indicate that activity of ATP-citrate lyase in cholinergic neurons is several times higher than that present in glial and noncholinergic neuronal cells.  相似文献   

8.
Recombinantly expressed human ATP:citrate lyase was purified from E. coli, and its kinetic behavior was characterized before and after phosphorylation. Cyclic AMP-dependent protein kinase catalyzed the incorporation of only 1 mol of phosphate per mole of enzyme homotetramer, and glycogen synthase kinase-3 incorporated an additional 2 mol of phosphate into the phosphorylated protein. Isoelectric focusing revealed that all of the phosphates were incorporated into only one of the four enzyme subunits. Phosphorylation resulted in a 6-fold increase in V(max) and the conversion of citrate dependence from sigmoidal, displaying negative cooperativity, to hyperbolic. The phosphorylated recombinant enzyme is more similar to the enzyme isolated from mammalian tissues than unphosphorylated enzyme with respect to the K(m) for citrate, CoA, and ATP, and the specific activity. Fructose 6-phosphate was found to be a potent activator (60-fold) of the unphosphorylated recombinant enzyme, with half-maximal activation at 0.16 mM, which results in a decrease in the apparent K(m) for citrate and ATP, as well as an increase in the V(max) of the reaction. Thus, human ATP:citrate lyase activity is regulated in vitro allosterically by phosphorylated sugars as well as covalently by phosphorylation.  相似文献   

9.
(1) The association of ATP citrate lyase with mitochondria was studied with isolated rat hepatocytes and mitochondria. (2) When hepatocytes were treated with digitonin, about 25% of the lyase activity was released like a mitochondrial enzyme. (3) The effect of temperature on release of lyase from hepatocytes was different from that on the release of other cytosolic or mitochondrial enzymes. (4) The fraction of total hepatic lyase in mitochondrial preparations made with exogenous MgCl2 was 30 times greater than that for a cytosolic marker enzyme, phosphoglycerate kinase. (5) Lyase substrates enhanced the release of the enzyme both from hepatocytes and from isolated mitochondria. (6) The metabolic significance of association of ATP citrate lyase with mitochondria is discussed. (7) Data obtained in the course of these experiments indicate that less than 3% of adenylate kinase is cytosolic.  相似文献   

10.
The four isomers of hydroxycitrate have been tested as substrates and inhibitors for citrate synthase, citrate lyase, and ATP citrate lyase. None of the isomers served as a substrate for citrate synthase and they were moderate to weak inhibitors of this reaction. Of the four isomers, only (pncit)-(2S)-2-hydroxycitrate did not serve as a substrate for citrate lyase while (pncit)-(4S)-4-hydroxycitrate was the only isomer which did not serve as a substrate for ATP citrate lyase. No consistent pattern of reactivity or inhibitor potency was seen with the different isomeric hydroxycitrates. It is proposed that more than one mode of binding is possible between the isomers and the three different active sites.  相似文献   

11.
Extracts prepared from young leaves of Pea (Pisum sativum), tobacco (Nicotiana tabacum), rape (Brassica napus), and spinach (Spinacia oleracea) all contained ATP:citrate lyase (ACL) activity, which was most active in rape leaflets (130 nmol min(-1) g fresh weight). In rape and spinach, ACL activity was predominantly localized in the plastids (between about 78% and 90% of the total activity), whereas in pea and tobacco, distribution was mainly cytosolic (about 85% and 78%, respectively, of the total). These distributions were calculated from the relative distributions of plastid and cytosol marker enzymes. Cross-reactivity between plant and rat ACL antibody was carried out by immunoblot analysis and, in rape and spinach, showed that a 120-kD protein, presumably indicating homomeric ACL proteins, was present in both cytosolic and plastidic fractions. In pea, two cross-reacting proteins were detected, the major material being in the cytosol fraction. Therefore, ACL occurs both in the cytosol and plastids of higher plants, but the distribution of activity changes according to the species. The plastidic ACL is proposed to function for the supply of acetyl-coenzyme A for lipid biosynthesis de novo, whereas the cytosolic ACL may provide acetyl-coenzyme A for the mevalonate pathway or fatty acid elongation.  相似文献   

12.
13.
14.
15.
ATP citrate lyase (ACL) catalyzes an ATP-dependent biosynthetic reaction which produces acetyl-coenzyme A and oxaloacetate from citrate and coenzyme A (CoA). Studies were performed with recombinant human ACL to ascertain the nature of the catalytic phosphorylation that initiates the ACL reaction and the identity of the active site residues involved. Inactivation of ACL by treatment with diethylpyrocarbonate suggested the catalytic role of an active site histidine (i.e., His760), which was proposed to form a phosphohistidine species during catalysis. The pH-dependence of the pre-steady-state phosphorylation of ACL with [γ-(33)P]-ATP revealed an ionizable group with a pK(a) value of ~7.5, which must be unprotonated for the catalytic phosphorylation of ACL to occur. Mutagenesis of His760 to an alanine results in inactivation of the biosynthetic reaction of ACL, in good agreement with the involvement of a catalytic histidine. The nature of the formation of the phospho-ACL was further investigated by positional isotope exchange using [γ-(18)O(4)]-ATP. The β,γ-bridge to nonbridge positional isotope exchange rate of [γ-(18)O(4)]-ATP achieved its maximal rate of 14 s(-1) in the absence of citrate and CoA. This rate decreased to 5 s(-1) when citrate was added, and was found to be 10 s(-1) when both citrate and CoA were present. The rapid positional isotope exchange rates indicated the presence of one or more catalytically relevant, highly reversible phosphorylated intermediates. Steady-state measurements in the absence of citrate and CoA showed that MgADP was produced by both wild type and H760A forms of ACL, with rates at three magnitudes lower than that of k(cat) for the full biosynthetic reaction. The ATPase activity of ACL, along with the small yet significant positional isotope exchange rate observed in H760A mutant ACL (~150 fold less than wild type), collectively suggested the presence of a second, albeit unproductive, phosphoryl transfer in ACL. Mathematical analysis and computational simulation suggested that the desorption of MgADP at a rate of ~7 s(-1) was the rate-limiting step in the biosynthesis of AcCoA and oxaloacetate.  相似文献   

16.
Characterization of ATP citrate lyase from Chlorobium limicola.   总被引:3,自引:3,他引:0       下载免费PDF全文
ATP citrate lyase (EC 4.1.3.8) from Chlorobium limicola was partially purified. It was established that the consumption of substrates and the formation of products proceeded stoichiometrically and that citrate cleavage was of the si-type. ADP and oxaloacetate inhibited enzyme activity. Oxaloacetate also inhibited the growth of C. limicola.  相似文献   

17.
ATP citrate lyase (ACL) is a cytosolic enzyme that catalyzes the synthesis of acetyl-CoA and oxaloacetate using citrate, CoA, and ATP as substrates and Mg2+ as a necessary cofactor. The ACL-dependent synthesis of acetyl-CoA is thought to be an essential step for the de novo synthesis of fatty acids and cholesterol. For this reason, inhibition of ACL has been pursued as a strategy to treat dyslipidemia and obesity. Traditionally, ACL enzyme activity is measured indirectly by coupling to enzymes such as malate dehydrogenase or chloramphenicol acetyl transferase. In this report, however, we describe a novel procedure to directly measure ACL enzyme activity. We first identified a convenient method to specifically detect [14C]acetyl-CoA without detecting [14C]citrate by MicroScint-O. Using this detection system, we devised a simple, direct, and homogeneous ACL assay in 384-well plate format that is suitable for high-throughput screening. The current assay consists of 1) incubation of ACL enzyme with [14C]citrate and other substrates/cofactors CoA, ATP, and Mg2+, 2) EDTA quench, 3) addition of MicroScint-O, the agent that specifically detects product [14C]acetyl-CoA, and 4) detection of signal by TopCount. This unique ACL assay may provide more efficient identification of new ACL inhibitors and allow detailed mechanistic characterization of ACL/inhibitor interactions.  相似文献   

18.
ATP:citrate lyase of Rhodotorula gracilis: purification and properties   总被引:2,自引:0,他引:2  
ATP:citrate lyase was purified from the oleaginous yeast Rhodotorula gracilis to homogeneity as judged by polyacrylamide gel electrophoresis, using a novel citrate-Sepharose procedure. The enzyme was found to have a molecular weight of 520,000 and consisted of four identical subunits (Mr = 120,000). Two minor low molecular weight bands were observed on SDS-PAGE (Mr 51,000 and 49,000). Trypsin digestion experiments indicated that these could have been the result of limited proteolysis by an endogenous trypsin-like proteinase. In this respect, it resembles the mammalian ATP:citrate lyase. The enzyme was stimulated by NH+4 ions and inhibited by palmitoyl, lauroyl, oleoyl, myristoyl and stearoyl-CoA esters, glutamate and glucose 6-phosphate but not by acetyl-CoA or shorter chain fatty acyl-CoA esters. The enzyme exhibited normal Michaelis-Menten kinetics for citrate; however there was a 3-fold increase in Km with a high concentration of Cl- ions (0.25 M). The possible regulatory roles of ATP:citrate lyase in R. gracilis are discussed in the light of these findings.  相似文献   

19.
20.
Incubation of hepatocytes with [32P]orthophosphate resulted in the incorporation of 32P into material that is precipitated by reaction with antibodies to ATP citrate lyase. The amount of radioactivity precipitated was decreased when unlabeled, purified ATP citrate lyase was added to extracts of hepatocytes that had been incubated with [32P]orthophosphate. Addition of glucagon to hepatocytes that had been preincubated with [32P]orthophosphate resulted in a 56% increase in acid-stable 32P in the trichloroacetic acid-insoluble portion of immunoprecipitates. Catalytic phosphate bound to ATP citrate lyase reaction with ATP and Mg2+ is acid-labile; thus, glucagon-dependent phosphorylation is distinguished from the catalytic phosphate. When hepatocytes were incubated in the absence of [32P]orthophosphate and extracted in a medium containing [gamma-32P]ATP, no acid-stable 32P was present in immunoprecipitates. This indicates that the incorporation into ATP citrate lyase of acid-stable phosphate occurs prior to extraction of the enzyme. Preliminary studies, using a procedure that allows for measurement of enzyme activity starting 1 min after beginning the extraction of lyase from hepatocytes, have shown no difference in lyase activity when hepatocytes are treated with or without glucagon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号