首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The repressor of bacteriophage Mu functions in the establishment and maintenance of lysogeny by binding to Mu operator DNA to shut down transposition. A domain at its N terminus functions in DNA binding, and temperature-sensitive mutations in this domain can be suppressed by truncations at the C terminus. To understand the role of the C-terminal tail in DNA binding, a fluorescent probe was attached to the C terminus to examine its environment and its movement with respect to the DNA binding domain. The emission spectrum of this probe indicated that the C terminus was in a relatively hydrophobic environment, comparable to the environment of the probe attached within the DNA-binding domain. Fluorescence of two tryptophan residues located within the DNA-binding domain was quenched by the probe attached to the C terminus, indicating that the C terminus is in close proximity to this domain. Addition of DNA, even when it did not contain operator DNA, reduced quenching of tryptophan fluorescence, indicating that the tail moves away from the DNA-binding domain as it interacts with DNA. The presence of the tail also produced a trypsin hypersensitive site within the DNA-binding domain; mutant repressors with an altered or truncated C terminus were relatively resistant to cleavage at this site. Interaction of the wild-type repressor with DNA greatly reduced cleavage at the site. A repressor with a temperature-sensitive mutation in the DNA-binding domain was especially sensitive to cleavage by trypsin even in the presence of DNA, and the C-terminal tail failed to move in the presence of DNA at elevated temperatures. These results indicate that the tail sterically inhibits DNA binding and that it moves during establishment of repression. Such conformational changes are likely to be involved in communication between repressor protomers for cooperative DNA binding.  相似文献   

2.
3.
The temperate phage P1 encodes two genes whose products antagonize the action of the phage's C1 repressor of lytic functions, namely a distantly linked antirepressor gene, ant, and a closely linked c1 inactivator gene, coi. Starting with an inducible coi-recombinant plasmid, Coi protein was overproduced and purified to near homogeneity. By using a DNA mobility shift assay we demonstrate that Coi protein inhibits the operator binding of the C1 repressors of the closely related P1 and P7 phages. Coi protein (Mr = 7,600) exerts its C1-inactivating function by forming a complex with the C1 repressor (Mr = 32,500) at a molar ratio of about 1:1, as shown by density gradient centrifugation and gel filtration. C1 repressor and Coi protein are recovered in active form from the complex, suggesting that noncovalent interactions are the sole requirements for complex formation. The interplay of repressor and antagonists operating in the life cycle of P1 is discussed.  相似文献   

4.
Phage Mu's c gene product is a cooperative regulatory protein that binds to a large, complex, tripartite 184-bp operator. To probe the mechanism of repressor action, we isolated and characterized 13 phage mutants that cause Mu to undergo lytic development when cells are shifted from 30 to 42 degrees C. This collection contained only four mutations in the repressor gene, and all were clustered near the N terminus. The cts62 substitution of R47----Q caused weakened specific DNA recognition and altered cooperativity in vitro. A functional repressor with only 63 amino acids of Mu repressor fused to a C-terminal fragment of beta-galactosidase was constructed. This chimeric protein was an efficient repressor, as it bound specifically to Mu operator DNA in vitro and its expression conferred Mu immunity in vivo. A DNA looping model is proposed to explain regulation of the tripartite operator site and the highly cooperative nature of repressor binding.  相似文献   

5.
The wild-type repressor CI of temperate mycobacteriophage L1 and the temperature-sensitive (ts) repressor CIts391 of a mutant L1 phage, L1cIts391, have been separately overexpressed in E. coli. Both these repressors were observed to specifically bind with the same cognate operator DNA. The operator-binding activity of CIts391 was shown to differ significantly than that of the CI at 32 to 42 degrees C. While 40-95% operator-binding activity was shown to be retained at 35 to 42 degrees C in CI, more than 75% operator-binding activity was lost in CIts391 at 35 to 38 degrees C, although the latter showed only 10% less binding compared to that of the former at 32 degrees C. The CIts391 showed almost no binding at 42 degrees C. An in vivo study showed that the CI repressor inhibited the growth of a clear plaque former mutant of the L1 phage more strongly than that of the CIts391 repressor at both 32 and 42 degrees C. The half-life of the CIts391-operator complex was found to be about 8 times less than that of the CI-operator complex at 32 degrees C. Interestingly, the repressor-operator complexes preformed at 0 degrees C have shown varying degrees of resistance to dissociation at the temperatures which inhibit the formation of these complexes are inhibited. The CI repressor, but not that of CIts391, regains most of the DNA-binding activity on cooling to 32 degrees C after preincubation at 42 to 52 degrees C. All these data suggest that the 131(st) proline residue at the C-terminal half of CI, which changed to leucine in the CIts391, plays a crucial role in binding the L1 repressor to the cognate operator DNA, although the helix-turn-helix DNA-binding motif of the L1 repressor is located at its N-terminal end.  相似文献   

6.
Repression of a strong promoter localized 5' to the P1 ban gene is a prerequisite for cloning the ban operon in the multicopy plasmid pBR325. Repression is brought about by the binding of P1 repressor to the operator of the ban operon (Heisig, A., Severin, I., Seefluth, A. K., and Schuster, H. (1987) Mol. Gen. Genet. 206, 368-376). Binding of RNA polymerase in vitro overlaps with the operator and is inhibited by P1 repressor as shown by electron microscopy. The mutant P1 bac, which renders ban expression constitutive, contains a single base pair exchange within the operator. As a consequence, more repressor is required (i) for the inhibition of binding of RNA polymerase, and (ii) for the electrophoretic retardation of a P1 bac DNA fragment when compared to the corresponding bac+ fragment. A P1 ban recombinant plasmid containing a 4-base pair deletion close to the operator still allows binding of repressor but not of RNA polymerase. By that means, a repressible promoter is located at the P1 map position 72 in a distance of about 2.5 kilobase pairs to the beginning of the ban gene.  相似文献   

7.
The immC region of bacteriophage P1 contains the c1 repressor gene and its upstream region with four c1-controlled operators and four open reading frames. A c1 inactivator gene, coi, was defined by mutations in immC that suppress the virulence of the P1virC mutation. The exact location of the coi gene was not known (Scott, J.R. (1980) Curr. Top. Microbiol. Immunol. 90, 49-65). When a variety of P1 immC fragments were inserted into an expression vector, a gene product was inducible for the open reading frame 4 only. We identify this product as the c1 inactivator protein, coi by the following criteria: (a) expression of coi from a recombinant plasmid induces the P1 prophage and inhibits lysogenization of sensitive bacteria by P1; (b) all c1-controlled operator-promoter elements tested in vivo are derepressed by coi; (c) a partially purified coi protein (apparent molecular weight = 4800) interacts with c1 repressor and inhibits its binding to the operator in vitro. Based on these results we refine a model for the regulation of those genes and elements within immC which participate in the decision of P1 to enter the lytic or lysogenic pathway.  相似文献   

8.
A bacteriophage P1-specific DNA binding protein has been partially purified from P1-infected Escherichia coli and identified as the P1c1 repressor. This protein is absent from non-suppressing cells infected with a P1c1 amber mutant. The binding activity of the protein isolated from cells infected with a c1ts mutant is thermolabile in vitro, so the repressor protein is the product of the c1 gene. Studies on P1 DNA fragments generated by restriction endonuclease digestion indicate that the c1 repressor binds preferentially in vitro at a site or sites located close to the c1 gene itself.  相似文献   

9.
K L Knight  R T Sauer 《Biochemistry》1988,27(6):2088-2094
A set of C-terminal deletion mutants of the Mnt repressor of bacteriophage P22 has been constructed, and the corresponding truncated proteins have been purified. A truncated protein lacking the three C-terminal residues, Lys80-Thr81-Thr82, binds operator DNA with an affinity near wild type and has a normal tetrameric structure. Loss of the next residue, Lys79, causes a 600-fold decrease in operator affinity, but the truncated protein is still tetrameric. Further sequential deletions of Tyr78 and Leu77 cause modest decreases in operator affinity, but the truncated proteins are now dimeric. These results indicate that Lys79 is an important determinant of the high affinity of Mnt repressor for operator DNA and that Tyr78 is an important determinant of tetramer formation by Mnt repressor.  相似文献   

10.
Bacteriophage P1 encodes several regulatory elements for the lytic or lysogenic response, which are located in the immC, immI, and immT regions. Their products are the C1 repressor of lytic functions with the C1 inactivator protein Coi, the C4 repressor of antirepressor synthesis and the modulator protein Bof, respectively. We have studied in vitro the interaction of the components of the immC and immT regions with C1-controlled operators using highly purified Bof, C1, and Coi proteins. Bof protein (M(r) = 9,800) does not interact with C1 repressor alone, but as shown by DNA mobility shift experiments, in the presence of C1 repressor Bof binds to all operators tested by forming a C1.Bof-operator DNA ternary complex. The effect of this complex formation was studied in more detail with the operator of the c1 gene. Here, Bof only marginally alters the C1 repressor footprint at Op99a,b, but nevertheless considerably influences the repressibility of the operator.promoter element: (i) the autoregulated c1 mRNA synthesis is further down-regulated and (ii) the ability of Coi protein to dissociate the C1.operator DNA complex is strongly inhibited. We suggest that Bof protein functions by modulating C1 repression of many widely dispersed operators on the prophage genome.  相似文献   

11.
In Salmonella typhimurium the genes coding for the enzymes of histidine utilization (hut) are clustered in two adjacent operons, hutMIGC and hut(P,R,Q)UH. A single repressor, the product of the C gene, regulates both operons by binding at two operator sites, one near M and one in (P,R,Q). The deoxyribonucleic acid (DNA)-binding activity of the repressor was measured using DNA's containing separate operators. The repressor had greater activity when assayed using DNA containing the operator of the (P,R,Q)UH operon than when assayed using DNA containing the operator of the MIGC operon. The binding to either operator was absent in the presence of the inducer, urocanate. The DNA-binding activities were also determined for two super-repressors. The super-repressors had altered DNA-binding properties, although the self-regulated nature of the repressors complicated the analysis of the results. A purfication procedure for the wild-type repressor is presented. The purified repressor was somewhat unstable, and additional experiments using it were not performed.  相似文献   

12.
4,4'-bis(1-anilino-8-naphthalenesulfonic acid (Bis-ANS), an environment-sensitive fluorescent probe for hydrophobic region of proteins, binds specifically to the C-terminal domain of lambda repressor. The binding is characterized by positive cooperativity, the magnitude of which is dependent on protein concentration in the concentration range where dimeric repressor aggregates to a tetramer. In this range, positive cooperativity becomes more pronounced at higher protein concentrations. This suggests a preferential binding of Bis-ANS to the dimeric form of the repressor. Binding of single operator OR1 to the N-terminal domain of the repressor causes enhancement of fluorescence of the C-terminal domain bound Bis-ANS. The binding of single operator OR1 also leads to quenching of fluorescence of tryptophan residues, all of which are located in the hinge or the C-terminal domain. Thus two different fluorescent probes indicate an operator-induced conformational change which affects the C-terminal domain. The significance of this conformational change with respect to the function of lambda repressor has been discussed.  相似文献   

13.
The repressor of bacteriophage P1, encoded by the c1 gene, is responsible for maintaining a P1 prophage in the lysogenic state. In this paper we present: (1) the sequence of the rightmost 943 base-pairs of the P1 genetic map that includes the 5'-terminal 224 base-pairs of the c1 gene plus its upstream region; (2) the construction of a plasmid that directs the production of approximately 5% of the cell's protein as P1 repressor; (3) a deletion analysis that establishes the startpoint of P1 repressor translation; (4) filter binding experiments that demonstrate that P1 repressor binds to several regions upstream from the c1 gene; (5) DNase I footprint experiments that directly identify two of the P1 repressor binding sites. Sequences very similar to the identified binding sites occur in at least 11 sites in P1, in most cases near functions known, or likely, to be controlled by repressor. From these sites we have derived the consensus binding site sequence ATTGCTCTAATAAATTT. We suggest that, unlike other phage operators, the P1 repressor binding sites lack rotational symmetry.  相似文献   

14.
The wild-type and temperature-sensitive (ts) repressor genes were cloned from the temperate mycobacteriophage L1 and its mutant L1cIts391, respectively. A sequencing analysis revealed that the 131st proline residue of the wild-type repressor was changed to leucine in the ts mutant repressor. The 100% identity that was discovered between the two DNA regions of phages L1 and L5, carrying the same sets of genes including their repressor genes, strengthened the speculation that L1 is a minor variant of phage L5 or vice versa. A comparative analysis of the repressor proteins of different mycobacteriophages suggests that the mycobacteriophage-specific repressor proteins constitute a new family of repressors, which were possibly evolved from a common ancestor. Alignment of the mycobacteriophage-specific repressor proteins showed at least 7 blocks (designated I-VII) that carried 3-8 identical amino acid residues. The amino acid residues of blocks V, VI, and some residues downstream to block VI are crucial for the function of the L1 (or L5) repressor. Blocks I and II possibly form the turn and helix 2 regions of the HTH motif of the repressor. Block IV in the L1 repressor is part of the most charged region encompassing amino acid residues 72-92, which flanks the putative N-terminal basic (residues 1-71) and C-terminal acidic (residues 93-183) domains of L1 repressor.  相似文献   

15.
16.
17.
We have isolated 64 different missense mutations at 36 out of 53 residue positions in the Arc repressor of bacteriophage P22. Many of the mutant proteins with substitutions in the C-terminal 40 residues of Arc have reduced intracellular levels and probably have altered structures or stabilities. Mutations in the N-terminal ten residues of Arc cause large decreases in operator DNA binding affinity without affecting the ability of Arc to fold into a stable three-dimensional structure. We argue that these N-terminal residues are important for operator recognition but that they are not part of a conventional helix-turn-helix DNA binding structure. These results suggest that Arc may use a new mechanism for sequence specific DNA binding.  相似文献   

18.
Saturation mutagenesis of Tn10-encoded tet operator O1 was performed by chemical synthesis of 30 sequence variants yielding all possible point mutations of an operator half side. Their effect on Tet repressor binding was scored by an in-vivo repressor titration system. Tet repressor affinities of selected operator mutants were further characterized in vitro by dissociation rate measurements. The O1 sequence spans 19 base-pairs. Out of these, all 18 palindromic base-pairs are involved in Tet repressor recognition. The central base-pair does not contribute to sequence-specific binding of Tet repressor. At position 1 a pyrimidine residue is sufficient for maximal affinity to the repressor. At positions 2, 3 and 4, each mutation reduces repressor binding at least tenfold. Mutations at positions 5, 6, 7, 8 and 9 result in less drastic reductions of Tet repressor binding. Differential effects of mutations at a given position are used to deduce the chemical functions contacted by Tet repressor. The T.A to A.T transversion at position 9 increases Tet repressor affinity slightly, while all other mutations decrease repressor binding. The increased affinity of the wild-type tet operator O2 compared to wild-type O1 results from the addition of two favorable transversions at positions +/- 9 and an unfavorable T.A to C.G transition at position -7. Deletion or palindromic doubling of the central base-pair of the O1 palindrome reveals that the wild-type spacing of both operator half sides is crucial for efficient Tet repressor binding.  相似文献   

19.
20.
Treatments that damage DNA or inhibit DNA synthesis in E. coli induce the expression of a set of functions called SOS functions that are involved in DNA repair, mutagenesis, arrest of cell division and prophage induction. Induction of SOS functions is triggered by inactivation of the LexA repressor or a phage repressor. Inactivation of these repressors results from their cleavage by the E. coli RecA protein in the presence of single-stranded DNA and a nucleoside triphosphate.We found that these cleavage reactions are controlled by two mechanisms in vitro: one is through the structural change of the RecA protein in the ternary complex, RecA-ssDNA-ATP-γ-S. The active ternary complex is formed by binding of ATP-γ-S to a complex of RecA protein and ssDNA. On the other hand, when the RecA protein binds to ATP-γ-S prior to its binding to ssDNA, the resulting complex has no or only very weak cleavage activity toward the repressor. This structural change is negatively controlled by its C-terminal part. The loss of the 25 amino acid residues from the C-terminal leads the RecA protein to stable binding to dsDNA as well as ssDNA, and the protein takes the activated form for the repressor cleavage constitutively. The other mechanism is through the structural change of the repressor. The cleavage reaction of a ∅80cI repressor is greatly stimulated by the presence of d(G-G), and d(G-G) stimulates the cleavage by binding to the C-terminal half of the ∅80cI repressor. Moreover, the C-terminal fragment of the cleaved products of the 80cI repressor was able to cleave a ∅80cI-λ chimeric repressor. These results strongly suggested that th active site of the repressor cleavage was located in the C-terminal domain of the repressor and that the C-terminal fragment produced by the cleavage could cleave the repressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号