首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
mRNA levels for urokinase type plasminogen activator (uPA), tissue type plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator inhibitor-2 (PAI-2) were examined in human diploid (neonatal foreskin) fibroblasts grown in 200-ml microcarrier suspension culture. Four different substrates were used. These included gelatin-coated polystyrene plastic, DEAE-dextran, glass-coated polystyrene plastic and uncoated polystyrene plastic. Our previous studies have shown that culture fluids from diploid fibroblasts grown on DEAE-dextran contained higher levels of plasminogen-dependent fibrinolytic activity than culture fluids from the same cells grown on other substrates. The increased plasminogen activator activity was due largely to elevated amounts of tPA (In Vitro Cell. Develop. Biol. 22: 575–582, 1986). The present study shows that there is a corresponding elevation of tPA mRNA in diploid fibroblasts cultured on DEAE-dextran relative to the other substrates. There does not appear to be any difference in uPA mRNA or in mRNA for PAI-1 or PAI-2 produced by the same cells on the four substrates. These data suggest that the influence of the substrate on plasminogen activator production is mediated at the genetic level.  相似文献   

2.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

3.
Urokinase-type plasminogen activator (uPA) and one of its inhibitors, the PAI-1, are involved in the proteolytic cascade of matrix degradation during in vivo morphogenesis or metastasis. In the present study, we have characterized the in vitro morphological behavior of human normal and malignant mammary epithelial cells and determined the levels of uPA activity and PAI-1 during these events. Two-dimensional cultures in the presence of inductive fibroblast-conditioned medium (CM) allowed migration of HBL-100 cells and MDA-MB-231 cells. Normal human mammary epithelial cells (HMEC) and MCF-7 cells failed to migrate under these conditions. The epithelial cell migration correlated with an increase in the uPA activity whereas their immobility correlated with both increases in uPA activity and PAI-1 level. In three-dimensional cultures in collagen gel, fibroblasts or fibroblast CM induced branching tubular morphogenesis to HMEC, cord-like extensions to HBL-100 cells and a greater invasiveness ability to MDA-MB-231 cells. These events correlated with an increased uPA activity. In contrast, no morphological rearrangement was observed in MCF-7 cells and this correlated with both increases in uPA activity and PAI-1 level. Altogether, these results show that the in vitro mammary epithelial behavior is under the influence of mesenchymal inductive signals and is in agreement with modifications of uPA activity and PAI-1 levels. Our culture system gives a suitable model to study the mechanisms of mammary development and metastasis and to highlight the involvement of proteases and their inhibitors in cell-cell positioning and cell-matrix reorganization.  相似文献   

4.
Cultured bovine aortic endothelial cells have a relatively complex fibrinolytic system that is responsive to both the physiological state of the cell itself and to a variety of agents added to the culture medium. The fibrinolytic activity of these cells results from the production of both urokinase-type and tissue-type plasminogen activators and is regulated by an inhibitor capable of neutralizing their activities. The properties of these fibrinolytic components will be reviewed, and their respective roles in initiating and regulating the fibrinolytic activity of the cells will be summarized. A cDNA coding for the inhibitor has been isolated, and its sequence will be compared to that of other serine proteinase inhibitors.  相似文献   

5.
Plasminogenactivatorinhibitor1(PAI1)isaspecificphysiologicalinhibitorofurokinasetypeplasminogenactivator(uPA)andtissuetypeplasminogenactivator(tPA)[1].ChangesofPAI1mayinduceimbalancebetweenglomerularextracellularmatrix(ECM)synthesisanddegradation,thusleading…  相似文献   

6.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

7.
Abstract

Tissue plasminogen activator (tPA) is a protein involved in the breakdown of blood clots. We have previously produced a human tPA (htPA)-overexpressing transgenic pig using a mammary gland-specific promoter. In this study, we have established a transgenic pig mammary gland cell line that produces recombinant htPA. The mammary gland cells grew well and retained their character over long periods of culture. There was no difference in the extent of apoptosis in transgenic cells compared to wild-type mammary gland cells. In addition, the transgenic mammary gland cells expressed and secreted htPA into the conditioned media at a concentration similar to that in milk. This transgenic cell line represents a simple and ethical method for recombinant htPA production.  相似文献   

8.
Plasminogen activator activity was demonstrated in two carcinoma cell lines: A549 cells derived from a human alveolar epithelial carcinoma; and ZHC cells derived from a rat hepatoma. Both cells had intracellular plasminogen activator activity throughout their cell cycles and in each case this activity reached a maximum. For A549 cells the maximal activity took place either during the G2 phase or in the course of the S to G2 transition, suggesting that plasminogen activator might play a role in cell division. For ZHC cells, the maximal activity occurred at the start of the S phase, suggesting that in these cells plasminogen activator might be involved in DNA replication.  相似文献   

9.
Increased expression of plasminogen activator inhibitor type 1 (PAI-1) is associated with decreased apoptosis of neoplastic cells. We sought to determine whether PAI-1 alters apoptosis in vascular smooth muscle cells (VSMC) and, if so, by what mechanisms. A twofold increase in the expression of PAI-1 was induced in VSMC from transgenic mice with the use of the SM-22alpha gene promoter (SM22-PAI+). Cultured VSMC from SM22-PAI+ mice were more resistant to apoptosis induced by tumor necrosis factor plus phorbol myristate acetate or palmitic acid compared with VSMC from negative control littermates. Both wild type (WT) and a stable active mutant form of PAI-1 (Active) inhibited caspase-3 amidolytic activity in cell lysates while a serpin-defective mutant (Mut) PAI-1 did not. Similarly, both WT and Active PAI-1 decreased amidolytic activity of purified caspase-3, whereas Mut PAI-1 did not. WT but not Mut PAI-1 decreased the cleavage of poly-[ADP-ribose]-polymerase (PARP), the physiological substrate of caspase-3. Noncovalent physical interaction between caspase-3 and PAI-1 was demonstrable with the use of both qualitative and quantitative in vitro binding assays. High affinity binding was eliminated by mutations that block PAI-1 serpin activity. Accordingly, attenuated apoptosis resulting from elevated expression of PAI-1 by VSMC may be attributable, at least in part, to reversible inhibition of caspase-3 by active PAI-1.  相似文献   

10.
Respiratory systems are constantly being challenged by pathogens. Lung epithelial cells serve as a first line of defense against microbial pathogens by detecting pathogen-associated molecular patterns (PAMPs) and activating downstream signaling pathways, leading to a plethora of biological responses required for shaping both the innate and adaptive arms of the immune response. Acute-phase proteins (APPs), such as type 1 plasminogen activator inhibitor (PAI-1), play important roles in immune/inflammatory responses. PAI-1, a key regulator for fibrinolysis and coagulation, acts as an APP during acute phase response (APR) such as acute lung injury (ALI), inflammation, and sepsis. However, the role of PAI-1 in the pathogenesis of these diseases still remains unclear, especially in bacterial pneumonia. In this study, we showed that PAI-1 expression is upregulated following nontypeable Haemophilus influenzae (NTHi) infection. PAI-1 knockout (KO) mice failed to generate early immune responses against NTHi. Failure of generating early immune responses in PAI-1 KO mice resulted in reduced bacterial clearance and prolonged disease process, which in turn led to enhanced inflammation at late stage of infection. Moreover, we also found that NTHi induces PAI-1 via activation of TLR2–MyD88–MKK3–p38 MAPK signaling pathway. These data suggest that PAI-1 plays critical role in earl host defense response against NTHi infection. Our study thus reveals a novel role of PAI-1 in infection caused by NTHi, one of the most common gram-negative bacterial pathogens in respiratory systems.  相似文献   

11.
Quiescent endothelial cells contain low concentrations of plasminogen activator inhibitor type 2 (PAI-2). However, its synthesis can be rapidly stimulated by a variety of inflammatory mediators. In this study, we provide evidence that PAI-2 interacts with proteasome and affects its activity in endothelial cells. To ensure that the PAI-2·proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after (a) transfection of HeLa cells with pCMV-PAI-2 and coimmunoprecipitation of both proteins with anti-PAI-2 antibodies and (b) silencing of the PAI-2 gene using specific small interfering RNA (siRNA). Subsequently, cellular distribution of the PAI-2·proteasome complexes was established by immunogold staining and electron microscopy analyses. As judged by confocal microscopy, both proteins appeared in a diffuse cytosolic pattern, but they also could be found in a dense perinuclear and nuclear location. PAI-2 was not polyubiquitinated, suggesting that it bound to proteasome not as the substrate but rather as its inhibitor. Consistently, increased PAI-2 expression (a) abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-2 and pd2EGFP-N1, (b) prevented degradation of p53, as evidenced both by confocal microscopy and Western immunoblotting, and (c) inhibited proteasome cleavage of specific fluorogenic substrate. This suggests that PAI-2, in endothelial cells induced with inflammatory stimuli, can inhibit proteasome and thus tilt the balance favoring proapoptotic signaling.  相似文献   

12.
In this study, the effects of acetylsalicylic acid (aspirin) on the expression of uPAR and the mechanism by which it regulates expression of uPAR was examined in two different colon cancer cell lines HCT116 and GEO, respectively. The study shows that under physiological concentration, aspirin upregulates steady-state level expression of uPAR mRNA as well as expression of uPAR protein. Using a transient transfection assay, a region corresponding to -1 to -398 region of uPAR promoter has been identified which shows maximum responsiveness to aspirin treatment and found that this region is sufficient for the aspirin-induced up-regulation of uPAR. A stable integration of a single copy of this region coupled to luciferase reporter gene into the HCT116 genome also behaved similarly. Using gel mobility shift assays, it is found that the distal AP1 region between -171 and -186 is responsible for the aspirin-induced up-regulation of uPAR. Mutation of this region reduced up-regulation. Supershift assays identify that the bound proteins at this region are c-Jun and Fra-1. Real-time PCR analysis showed more than 4-fold increase in the binding of c-Jun and a 1.6-fold increase in the binding of Fra-1 in this region and this up-regulation corresponds to an increased binding of acetylated histone H4 in this region. Since an increase in the expression of uPAR corresponds to an increase in the migration of the cell, a migration assay was performed and result showed a 3-fold increased migration of HCT116 cells through the vitronectin-coated layer. Thus, an AP1 mediated pathway for aspirin induced up-regulation of uPAR has been identified.  相似文献   

13.
A known side-activity of the oral potassium-sparing diuretic drug amiloride is inhibition of the enzyme urokinase-type plasminogen activator (uPA, K(i)=7 μM), a promising anticancer target. Several studies have demonstrated significant antitumor/metastasis properties for amiloride in animal cancer models and it would appear that these arise, at least in part, through inhibition of uPA. Selective optimization of amiloride's structure for more potent inhibition of uPA and loss of diuretic effects would thus appear as an attractive strategy towards novel anticancer agents. The following report is a preliminary structure-activity exploration of amiloride analogs as inhibitors of uPA. A key finding was that the well-studied 5-substituted analogs ethylisopropyl amiloride (EIPA) and hexamethylene amiloride (HMA) are approximately twofold more potent than amiloride as uPA inhibitors.  相似文献   

14.
蝮蛇毒蛋白C激活物对内毒素性离体大鼠心脏功能的影响   总被引:1,自引:0,他引:1  
目的研究蝮蛇毒蛋白C激活物(PCA)组分对大鼠内毒素(LPS)性心肌损伤作用的影响。方法取SD雄性大鼠32只随机分成正常对照组、LPS组、PCA组和PCA LPS组,用Krebs-Henseleit(K-H)液对大鼠离体心脏行主动脉逆灌。在相应时点记录HR、LVSP、LVEDP、LVDP、 dp/dtmax、-dp/dtmax的变化,并测定冠脉流出液中的超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量。结果PCA明显减轻LPS诱导的心功能改变并抑制心肌SOD活性降低和MDA的升高(P<0.01)。结论PCA对内毒素诱导的心肌损伤改善作用明显,其机制可能是通过保护血管内皮功能,改善微循环,稳定心肌酶活性和膜相结构等途径有关。  相似文献   

15.
16.
Wild-type plasminogen activator inhibitor type-1 (PAI-1) rapidly converts to the inactive latent state under conditions of physiological pH and temperature. For in vivo studies of active PAI-1 in cell culture and in vivo model systems, the 14-1B PAI-1 mutant (N150H-K154T-Q319L-M354I), with its stabilized active conformation, has thus become the PAI-1 of choice. As a consequence of the increased stability, the only two forms likely to be encountered are the active or the cleaved form, the latter either free or complexed with target proteinase. We hereby report the first structure of the stable 14-1B PAI-1 variant in its reactive center cleaved form, to a resolution of 2.0 A. The >99% complete structure represents the highest resolved structure of free cleaved PAI-1. This high-resolution structure should be of great use for drug target development and for modeling protein-protein interactions such as those of PAI-1 with vitronectin.  相似文献   

17.
Tissue-type plasminogen activator produced by recombinant DNA technology (rt-PA) has now been recognized as a promising clot-selective thrombolytic agent. We have compared the properties of rt-PA expressed in mouse C127 cells with those of naturally occurring human vascular plasminogen activator (HV-PA). The molecular weight of HV-PA and rt-PA was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to be approx. 66,000. HV-PA and rt-PA were labile and rapidly lost their activities at pH values below 5.5. The optimum pH of HV-PA and rt-PA for plasminogen activation was around 8.5. HV-PA and rt-PA appeared to be very similar in amidolytic properties, amino-acid composition and carbohydrate composition. Moreover, the N-terminal amino-acid sequence of HV-PA was in good agreement with that of rt-PA. The purified preparations of HV-PA and rt-PA had specific activities of about 250,000 and 600,000 IU/mg, respectively. Both activators bound to fibrin clots to similar degree. In immunodiffusion as well as in the quenching experiments of the fibrinolytic activities, rt-PA appeared to be immunodiffusion as well as in the quenching experiments of the fibrinolytic activities, rt-PA appeared to be immunologically indistinguishable from HV-PA. All these findings indicate that rt-PA expressed in mouse C127 cells is identical with naturally occurring HV-PA in physical and chemical properties.  相似文献   

18.
Summary— Localization of p53 in human cultured lymphocytes and in cultured skin fibroblasts was studied by immuno-fluorescent microscopy and post-embedded immunoelectron microscopy using Lowicryl K4M. In quiescent lymphocytes, p53 was found in small amounts in both the cytoplasm and the nucleus. p53 in the nucleus was found associated with the non-chromatin structure. At 24 h or 72 h of PHA stimulation, p53 increased markedly just beneath the plasma membrane and in the nucleus, which stained diffusely with anti-p53. In resting fibroblasts, small amounts of p53 were present in both the cytoplasm and the nucleus. After 16 h of stimulation of confluent-resting fibroblasts by trypsinization and replating, a phase just prior to the initiation of DNA synthesis, p53 slightly increased in both the cytoplasm and the nucleus. Afterwards, p53 was present predominantly in the cytoplasm, closely associated with the cytoskeletal actin filaments. In mitotic cells, p53 was distributed throughout the cytoplasm. When fibroblasts were extracted with saponin, p53 was still associated with the actin filaments, as well as mitochondrial membranes and granular structures of the nuclear matrix. Our data suggest that the initial increase of p53 in cells that enter the cell cycle through G1 first bind to the actin cytoskeleton, and that some of the p53 then move into the nucleus to initiate gene activation and DNA synthesis for cell proliferation. This implies that there is some functionally significant interaction between p53 and actin in the cells.  相似文献   

19.
In previous research, we discovered that turkey deferent duct epithelial cells express a serine protease. Our experimental objective was to identify the gene that encodes this protein. A lambda phage cDNA library from duct cell mRNA was constructed. The library was screened using monoclonal antibodies previously produced against the turkey deferent-duct serine protease. Phage containing the protease cDNA was excised and re-circularized into plasmids. E. coli were transformed with plasmids containing protease cDNA, which was then isolated for sequencing. NCBI searches within the GenBank™ database returned 63.5 and 61.7% identity with murine and human hepatocyte growth-factor activator (HGFA) precursor, respectively. The turkey protease cDNA was then cloned into the pQE-32 expression vector and transformed into M15 cells for HIS-tagged expression of the recombinant protein, which was then purified using nickel-chelated Sepharose spin columns. Afterwards, Western blot analysis of the purified recombinant turkey protein revealed recognition by a monoclonal antibody specific to the proteolytic subunit of the turkey deferent duct protease. Therefore, these findings indicate that the recombinant HGFA precursor isolated from the deferent duct is the turkey seminal plasma protease that is secreted from the deferent duct. HGFA, a member of the Kringle-serine proteinase superfamily, can initiate diverse mitogenic, morphogenic and motogenic effects through its substrate hepatocyte growth factor. Although the presence of hepatocyte growth factor and its c-MET receptor have been reported in male mammalian reproductive tracts, our novel findings on the secretion of HGFA precursor from turkeys may help to elucidate the regulation of activated hepatocyte growth factor.  相似文献   

20.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and tissue plasminogen activator (tPA) play important roles in neuronal migration and survival. However, a direct link between the neurotrophic effects of PACAP and tPA has never been investigated. In this study, we show that, in PC12 cells, PACAP induced a 9.85-fold increase in tPA gene expression through activation of the protein kinase A- and protein kinase C-dependent signaling pathways. In immature cerebellar granule neurons (CGN), PACAP stimulated tPA mRNA expression and release of proteolytically active tPA. Immunocytochemical labeling revealed the presence of tPA in the cytoplasm and processes of cultured CGN. The inhibitory effect of PACAP on CGN motility was not affected by the tPA substrate plasminogen or the tPA inhibitor plasminogen activator inhibitor-1. In contrast, plasminogen activator inhibitor-1 significantly reduced the stimulatory effect of PACAP on CGN survival. Altogether, these data indicate that tPA gene expression is activated by PACAP in both tumoral and normal neuronal cells. The present study also demonstrates that PACAP stimulates the release of tPA which promotes CGN survival by a mechanism dependent of its proteolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号