首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently not much is known about the distribution and function of the phosphodiesterase type 7 (PDE-7) enzyme. Therefore, we carried out an extensive distribution analysis of the rat and human PDE-7 byin situ hybridization as well as RT-PCR. We isolated a partial rat cDNA clone that is highly homologous to the sequence of the human PDE-7 gene. RT-PCR tissue distribution analyses revealed expression of the mRNA of the human and rat-enzymes in most of the examined tissues, like adult heart, lung, brain, and liver, as well as in several cell lines of the immune system.In situ hybridization with the rat PDE-7 showed a differential expression pattern during the late phases of the developing rat brain with higher levels of mRNA in cortical and telencephalic structures in d 16, 18 and 20 embryonic stages, whereas in adult rat brain, higher amounts of mRNA could only be detected in cerebellum and, to a lesser extent, in hippocampus and the olfactory system.  相似文献   

2.
Tissue-specific patterns of microRNA (miRNA) expression contribute to organogenesis during embryonic development. Using the embryonic chicken gonads as a model for vertebrate gonadogenesis, we previously reported that miRNAs are expressed in a sexually dimorphic manner during gonadal sex differentiation. Being male biased, we hypothesised that up-regulation of microRNA 202* (MIR202*) is characteristic of testicular differentiation. To address this hypothesis, we used estrogen modulation to induce gonadal sex reversal in embryonic chicken gonads and analyzed changes in MIR202* expression. In ovo injection of estradiol-17beta at Embryonic Day 4.5 (E4.5) caused feminization of male gonads at E9.5 and reduced MIR202* expression to female levels. Female gonads treated at E3.5 with an aromatase inhibitor, which blocks estrogen synthesis, were masculinized by E9.5, and MIR202* expression was increased. Reduced MIR202* expression correlated with reduced expression of the testis-associated genes DMRT1 and SOX9, and up-regulation of ovary-associated genes FOXL2 and CYP19A1 (aromatase). Increased MIR202* expression correlated with down-regulation of FOXL2 and aromatase and up-regulation of DMRT1 and SOX9. These results confirm that up-regulation of MIR202* coincides with testicular differentiation in embryonic chicken gonads.  相似文献   

3.
4.
We have cloned from a chicken intestinal cDNA library Cmdr1, the first avian P-glycoprotein. Cmdr1 is 67% and 69% identical to proteins encoded by the human MDR1 and MDR2 genes, respectively. Functional expression of Cmdr1 in both mouse NIH 3T3 and yeast cells demonstrated that Cmdr1 represents the avian ortholog of human Mdr1, since it confers resistance to several anticancer drugs and the fluorescent dye rhodamine 6G. Northern and immunoblot analysis showed that CMDR1 is highly expressed throughout the intestine and in the liver, and to a considerable extent in kidney, brain, lung, heart, eye and follicles. In situ hybridization revealed a cell type-specific expression of CMDR1 in the intestinal epithelium, with high levels in the villi of the small and large intestine as well as crypt cells. These data suggest that Cmdr1 could play a role in intestinal detoxification. Most interestingly, immunoblotting showed that Cmdr1 is also expressed in ovarian tissues, particularly in theca cells, the major site for ovarian estrogen production in birds. Indeed, competition experiments indicated that Cmdr1 interacts with estradiol, since rhodamine 6G efflux was efficiently blocked by estradiol in NIH 3T3 cells expressing Cmdr1. Rhodamine efflux was also blocked by PSC-833, a specific inhibitor of steroid-transporting P-glycoproteins from mammalian cells. We propose that Cmdr1 in ovarian cells could be involved in the cell type-specific transport or release of estrogen that is essential for avian follicular development.  相似文献   

5.
dead end (dnd) was identified in zebrafish as a gene encoding an RNA-binding protein essential for primordial germ cell (PGC) development and gametogenesis in vertebrates. The adult dnd RNA expression has been restricted to the ovary in Xenopus or to the testis in mouse. Its protein product is nuclear in chicken germ cells but both cytosolic and nuclear in mouse cell cultures. Here we report the cloning and expression pattern of Odnd, the medakafish (Oryzias latipes) dnd gene. Sequence comparison, gene structure, linkage analysis and expression demonstrate that Odnd encodes the medaka Dnd orthologue. A systematic comparison of Dnd proteins from five fishes and tetrapod representatives led to the identification of five previously unidentified conserved regions besides the RNA recognition motif. The Odnd RNA is maternally supplied and preferentially segregated with PGCs. Its adult expression occurs in both sexes and is restricted to germ cells. In the testis, Odnd is abundant in spermatogonia and meiotic cells but absent in sperm. In the ovary, Odnd RNA persists throughout oogenesis. Furthermore, we developed a dual color fluorescent in situ hybridization procedure allowing for precise comparisons of expression and distribution patterns between two genes in medaka embryos and adult tissues. Importantly, this procedure co-localized Odnd and Ovasa in testicular germ cells and PGCs. Surprisingly, by cell transfection and embryo RNA injection we show that ODnd is cytoplasmic in cell cultures, cleavage embryos and PGCs. Therefore, medaka dnd encodes a cytoplasmic protein and identifies embryonic and adult germ cells of both sexes.  相似文献   

6.
By using DNA 3′-end labeling, immunocytochemistry and mRNA insitu hybridization detection techniques, the expression of inhibin subunits and LH receptor in the granulosa cells and tissue-type plasminogen activator (tPA) in the oocytes has been studied in relation to follicular development and atresia. The results demonstrated that: (i) tPA activity in the oocytes of normal developing follicles is undetectable, and increases significantly in the follicle undergoing atresia; (ii) the production of inhibin subunits in granulosa cells is negatively correlated with the expression of oocyte tPA activity, indicating that they may be an important regulator of oocyte tPA production and follicular development; (iii) in atretic follicles, granulosa cells do not express LH receptor and inhibin subunits. It is therefore suggested that tPA may play a role in oocyte self-destruction and clearance in some of atretic follicles, and inhibin of granulosa-origin might be an inhibitory factor for the translation of tPA in the oocyte. Project supported by the National Natural Science Foundation of China (Grant Nos. 39770099 and 39770290), Chinese Academy of Sciences and Rockefeller Foundation/WHO HPR research project.  相似文献   

7.
Selenoprotein P (Sepp) is an extracellular glycoprotein which functions principally as a selenium (Se) transporter and antioxidant. In order to assess the spatiotemporal expression of the Sepp gene during mouse embryogenesis, quantitative RT-PCR and in situ hybridization analyses were conducted in embryos and extraembryonic tissues, including placenta. Sepp mRNA expression was detected in all embryos and extraembryonic tissues on embryonic days (E) 7.5 to 18.5. Sepp mRNA levels were high in extraembryonic tissues, as compared to embryos, on E 7.5-13.5. However, the levels were higher in embryos than in extraembryonic tissues on E 14.5-15.5, but were similar in both tissues during the subsequent periods prior to birth. According to the results of in situ hybridization, Sepp mRNA was expressed principally in the ectoplacental cone and neural ectoderm, including the neural tubes and neural folds. In whole embryos, Sepp mRNA was expressed abundantly in nervous tissues on E 9.5-12.5. Sepp mRNA was also expressed in forelimb and hindlimb buds on E 10.5-12.5. In the sectioned embryos, on E 13.5-18.5, Sepp mRNA was expressed persistently in the developing limbs, gastrointestinal tract, nervous tissue, lung, kidney and liver. On E 16.5-18.5, Sepp mRNA expression in the submandibular gland, whisker follicles, pancreas, urinary bladder and skin was apparent. In particular, Sepp mRNA was detected abundantly in blood cells during all the observed developmental periods. These results show that Sepp may function as a transporter of selenium, as well as an antioxidant, during embryogenesis.  相似文献   

8.
9.
10.
Male-specific migration of cells from the mesonephric kidney into the embryonic gonad is required for testis formation in the mouse. It is unknown, however, whether this process is specific to the mouse embryo or whether it is a fundamental characteristic of testis formation in other vertebrates. The signalling molecule/s underlying the process are also unclear. It has previously been speculated that male-specific cell migration might be limited to mammals. Here, we report that male-specific cell migration is conserved between mammals (mouse) and birds (quail-chicken) and that it involves proper PDGF signalling in both groups. Interspecific co-cultures of embryonic quail mesonephric kidneys together with embryonic chicken gonads showed that quail cells migrated specifically into male chicken gonads at the time of sexual differentiation. The migration process is therefore conserved in birds. Furthermore, this migration involves a conserved signalling pathway/s. When GFP-labelled embryonic mouse mesonephric kidneys were cultured together with embryonic chicken gonads, GFP+ mouse cells migrated specifically into male chicken gonads and not female gonads. The immigrating mouse cells contributed to the interstitial cell population of the developing chicken testis, with most cells expressing the endothelial cell marker, PECAM. The signalling molecule/s released from the embryonic male chicken gonad is therefore recognised by both embryonic quail and mouse mesonephric cells. A candidate signalling molecule mediating the male-specific cell migration is PDGF. We found that PDGF-A and PDGF receptor-alpha are both up-regulated male-specifically in embryonic chicken and mouse gonads. PDGF signalling involves the phosphotidylinositol 3-kinase (PIK3) pathway, an intracellular pathway proposed to be important for mesonephric cell migration in the mammalian gonad. We found that a component of this pathway, PI3KC2alpha, is expressed male-specifically in developing embryonic chicken gonads at the time of sexual differentiation. Treatment of organ cultures with the selective PDGF receptor signalling inhibitor, AG1296 (tyrphostin), blocked or impaired mesonephric cell migration in both the mammalian and avian systems. Taken together, these studies indicate that a key cellular event in gonadal sex differentiation is conserved among higher vertebrates, that it involves PDGF signalling, and that in mammals is an indirect effect of Sry expression.  相似文献   

11.
We established a sensitive non-radioactive in situ hybridization (ISH) method for the detection of chicken IgG γ-chain mRNA in paraffin sections. RNA probes were transcribed in vitro fromcloned chicken IgG CH1 nucleotide sequences with SP6/T7 RNA polymerases in the presence of DIG-UTP. These probes were used for hybridization and were immunodetected using anti-DIG antibodies conjugated to horseradish peroxidase. The immunoreactive products were visualized with DAB-H2O2. IgG γ-chain mRNA-expressing cells were localized in both the spleen and oviductal tissues. This method demonstrated an excellent sensitivity since the ISH signal was clear and the background was negligible. We found that in the spleen IgG γ-chain mRNA-expressing cells were present mainly in the red pulp, whereas in the oviduct they appeared mainly in the mucosal stroma and not in the mucosal epithelium. Published: May 14, 2001.  相似文献   

12.
Ovarian development absolutely depends on communication between somatic and germ cell components. In contrast, it is not until after birth that interactions between somatic and germ cells play an important role in testicular maturation and spermatogenesis. Previously, we discovered that Irx3 expression was localized specifically to female gonads during embryonic development; therefore, we sought to determine the function of this genetic locus in developing gonads of both sexes. The fused toes (Ft) mutant mouse is missing 1.6 Mb of chromosome 8, which includes the entire IrxB cluster (Irx3, Irx5, Irx6), Ftm, Fts, and Fto genes. Homozygote Ft mutant embryos die around embryonic day 13.5 (E13.5); therefore, to assess later development, we harvested gonads at E11.5 and transplanted them into nude mouse hosts. Our results show defects in somatic and germ cell maturation in developing gonads of both sexes. Testis development was normal initially; however, by 3-wk posttransplantation, expression of Sertoli and peritubular myoid cell markers were decreased. In many cases, gonocytes failed to migrate to structurally impaired basement membranes of seminiferous cords. Developmental abnormalities of the ovary appeared earlier and were more severe. Over time, the Ft mutant ovary formed very few primordial or primary follicles, which contained oocytes that failed to grow and were surrounded by scarce granulosa cells that expressed low levels of FOXL2. By 3 wk after transplantation, it was difficult to identify ovarian tissue in Ft mutant ovary transplants. In summary, we conclude that the Ft locus contains genes essential for somatic-germ cell interactions, without which the germ cell niche fails to mature in both sexes.  相似文献   

13.
Temporal and Spatial Expression of Hoxa-2 During Murine Palatogenesis   总被引:2,自引:0,他引:2  
1. Mice homozygous for a targeted mutation of the Hoxa-2 gene are born with a bilateral cleft of the secondary palate associated with multiple head and cranial anomalies and these animals die within 24 hr of birth (Gendron-Maguire et al., 1993; Rijli et al., 1993; Mallo and Gridley, 1996). We have determined the spatial and temporal expression of the Hoxa-2 homeobox protein in the developing mouse palate at embryonic stages E12, E13, E13.5, E14, E14.5, and E15.2. Hoxa-2 is expressed in the mesenchyme and epithelial cells of the palate at E12, but is progressively restricted to the tips of the growing palatal shelves at E13.3. By the E13.5 stage of development, Hoxa-2 protein was found to be expressed throughout the palatal shelf. These observations correlate with palatal shelf orientation and Hoxa-2 protein may play a direct or indirect role in guiding the palatal shelves vertically along side the tongue, starting with the tips of the palatal shelves at E13, followed by the entire palatal shelf at E13.5.4. As development progresses to E14, the stage at which shelf elevation occurs, Hoxa-2 protein is downregulated in the palatal mesenchyme but remains in the medial edge epithelium. Expression of Hoxa-2 continues in the medial edge epithelium until the fusion of opposing palatal shelves.5. By the E15 stage of development, Hoxa-2 is downregulated in the palate and expression is localized in the nasal and oral epithelia.6. In an animal model of phenytoin-induced cleft palate, we report that Hoxa-2 mRNA and protein expression were significantly decreased, implicating a possible functional role of the Hoxa-2 gene in the development of phenytoin-induced cleft palate.7. A recent report by Barrow and Capecchi (1999), has illustrated the importance of tongue posture during palatal shelf closure in Hoxa-2 mutant mice. This along with our new findings of the expression of the Hoxa-2 protein during palatogenesis has shed some light on the putative role of this gene in palate development.  相似文献   

14.
15.
The sodium-dependent vitamin C transporter-2 (SVCT2) is the only ascorbic acid (ASC) transporter significantly expressed in brain. It is required for life and is critical during brain development to supply adequate levels of ASC. To assess SVCT2 function in the developing brain, we studied time-dependent SVCT2 mRNA and protein expression in mouse brain, using liver as a comparison tissue because it is the site of ASC synthesis. We found that SVCT2 expression followed an inverse relationship with ASC levels in the developing brain. In cortex and cerebellum, ASC levels were high throughout late embryonic stages and early post-natal stages and decreased with age, whereas SVCT2 mRNA and protein levels were low in embryos and increased with age. A different response was observed for liver, in which ASC levels and SVCT2 expression were both low throughout embryogenesis and increased post-natally. To determine whether low intracellular ASC might be capable of driving SVCT2 expression, we depleted ASC by diet in adult mice unable to synthesize ASC. We observed that SVCT2 mRNA and protein were not affected by ASC depletion in brain cortex, but SVCT2 protein expression was increased by ASC depletion in the cerebellum and liver. The results suggest that expression of the SVCT2 is differentially regulated during embryonic development and in adulthood.  相似文献   

16.
Plasma glutathione peroxidase (pGPx) is an extracellular antioxidative selenoenzyme which has been detected in various adult tissues, but little is known about the expression and distribution of pGPx during embryogenesis. To investigate the expression patterns of pGPx during embryogenesis, we performed quantitative real-time PCR, in situ hybridization, Western blot, and immunohistochemistry analyses in whole embryos or each developing organ of mice on embryonic days (E)7.5–18.5. In whole embryos of E7.5–8.5, pGPx mRNA was more typically expressed in extra-embryonic tissues including ectoplacental cone, trophectoderm, and decidual cells than in embryos. However, after E9.5, pGPx mRNA and protein levels were increased in the embryos with differentiation and growth, but trended to gradually decrease in the extra-embryonic tissues until E18.5. In sectioned embryonic tissues on E13.5–18.5, pGPx mRNA and protein were mainly expressed in the developing nervous tissues, the sensory organs, and the epithelia of lung, skin, and intestine, the heart and artery, and the kidney. In particular, pGPx immunoreactivity was very strong in the developing liver. These results indicate that pGPx is spatio-temporally expressed in various embryonic organs as well as extra-embryonic tissues, suggesting that pGPx may function to protect the embryos against endogenous and exogenous reactive oxygen species during organogenesis.  相似文献   

17.
18.
19.
Expression of prostaglandin E(2) receptor subtypes in mouse hair follicles.   总被引:4,自引:0,他引:4  
We investigated the mRNA distribution of the prostaglandin (PG) E(2) receptor subtypes and cyclooxygenases (COXs) in hair follicles of the mouse dorsal skin. In the 3-week hair follicles, which are in the anagen phase, EP3 and EP4 mRNA were expressed in the dermal papilla cells and the outer root sheath cells located in the hair bulb region, respectively. In the 8-week hair follicles, which are in the telogen phase, the signals for both EP3 and EP4 mRNAs had disappeared. To study the hair cycle-dependent expression of mRNAs for the EPs and COXs, an area of dorsal hair was depilated from 8-week-old mice. On days 8 and 12 after depilation, EP3 and EP4 mRNA were reexpressed in the dermal papilla cells and the outer root sheath cells, and the induction of COX-2 mRNA was also observed in the outer root sheath cells, the upper area of EP4 expression site. These results suggest that EP3 and EP4 receptors may involve in the development and regrowth of the hair follicles.  相似文献   

20.
Structure and developmental expression of the chicken NGF receptor   总被引:7,自引:0,他引:7  
The nucleotide and deduced amino acid sequence of a cDNA clone of the chicken NGF receptor (NGFR) is reported and is compared with sequences of mammalian NGF receptors. A model is presented in which monodentate or bidentate binding of NGF dimers to repeated cysteine-rich sequence elements of the receptor yields low- or high-affinity NGF binding, respectively. In situ hybridization is used to characterize expression of NGFR in developing chick from 40 hr to 10 days of embryogenesis. NGFR mRNA expression is detected in premigratory neural crest cells, in epibranchial placode cells, and in all sensory, sympathetic and parasympathetic derivatives of these structures. In the embryonic CNS, NGFR mRNA is detected in the mantle zone but not the periventricular germinal zone throughout most of the neural tube. By Embryonic Day 8, NGFR mRNA is detected in a substantial fraction of cells in every brain region, with highest levels present in developing motor neurons. NGFR mRNA also is transiently expressed in many mesenchymal cell populations including cells in branchial arch, sclerotome, muscle anlagen, and feather follicles. The functional significance of wide-spread embryonic expression of the NGF receptor is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号