首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies had shown that both migratory flight and ovarian maturation in Oncopeltus fasciatus were stimulated by juvenile hormone (JH), yet the two behaviors were mutually exclusive. To understand the relationship of this hormone to these behaviors, haemolymph juvenile hormone titers were determined in both sexes of Oncopeltus throughout the adult stage by the Manduca pigmentation bioassay. Animals reared under long day conditions (17L:7D, 24°C) showed an immediate rise in haemolymph titers of JH after adult emergence whereas those reared in a short day photoperiod (12L:12D, 24°C) had a more gradual increase in hormone titers. Migratory flight behavior occurred during periods of intermediate hormone titers while oviposition did not begin until JH titers had reached their peak. It was concluded that lower JH titers normally stimulate flight in the prereproductive adult whereas higher titers are required for complete ovarian development. The corpus allatum in Oncopeltus thus coordinates migration and reproduction in response to the environmental cues of photoperiod, temperature, and food quality.  相似文献   

2.
The beet armyworm, Spodoptera exigua, undertakes long-distance migration. We used flight mills to investigate the interaction between flight and reproduction in this species given the apparent absence of the oogenesis-flight syndrome. This syndrome, common in many migratory insects, is characterized by a suite of traits including migration during the pre-oviposition period followed by a switch to oogenesis. No negative effects of inter-ovipositional flight on lifetime fecundity were observed. Instead, adult reproductive output suffered when female flight was initiated the first day after eclosion and before oviposition, suggesting that migratory flight overlaps with the oviposition period rather than being confined to the pre-oviposition period. Mating status of both females and males had no negative influence on their flight performance except that flight distance and flight duration of 7-day-old mated females were significantly less than in unmated females. Furthermore, the number of eggs produced and mating frequency of females less than 7 days of age were not significantly correlated with flight performance, suggesting reproductive development paralleled and was independent of migratory behavior. This independent relationship between flight and reproduction of adults is consistent with the very short pre-oviposition period in this species, and suggests that resources are partitioned between these activities during pupal development. Together, our results uncovered neither obvious trade-offs nor mutual suppression between flight and reproduction in S. exigua, which indicates the lack of an oogenesis-flight syndrome for coordination of these two energy-intensive processes. We propose a conceptual model of migration for this species based on the current and previous studies.  相似文献   

3.
Juvenile hormone (JH) titers must be modulated to permit the normal progress of development and reproduction in mosquitoes. In adult female Aedes aegypti, JH levels are low at adult eclosion, elevated in sugar-fed females and low again after a blood meal. Although degradation plays a role, JH titer is fundamentally determined by the rate of biosynthesis in the corpora allata gland (CA). CA from newly eclosed females (0-1 h after emergence) exhibit a very low basal JH biosynthetic activity, Aedes-allatotropin stimulates the CA in newly emerged females to produce JH. There is a correlation between nutritional reserves at adult emergence (teneral reserves) and CA activity. JH synthesis is significantly reduced in teneral females that emerge with low nutritional reserves. Taking a blood meal results in a reduction of CA activity. The biosynthetic activity of Ae. aegypti CA is significantly inhibited by factors present in the head, as well as by Anopheles gambiae PISCF-allatostatin. Nutritional signals affect the release of allatotropin and allatostatins by the brain resulting in the activation or inhibition of JH synthesis. JH is therefore an important part of a transduction mechanism that connects changes in the nutritional status with activation of specific physiological events during reproduction.  相似文献   

4.
Insects display much variation in life histories mediated by juvenile hormone. We focus on the contribution of JH to variations in migratory life histories. In many migrants such as the large milkweed bug and the monarch butterfly, JH directly influences migratory flight and the relation between flight and reproduction (oogenesis-flight syndrome). In the true armyworm, JH regulates interactions among female calling, pheromone production, ovarian development, and migration with varying blends of structurally related forms of JH and JH acid. A role for JH also occurs in wing polymorphisms. Aphids regulate wing production via JH-mediated maternal effects; and in crickets, JH esterase modulates the JH influence on wing form. In addition, JH is implicated in wing muscle histolysis. The comprehensive Fairbairn model for JH regulation of wing polymorphisms in flight behavior predicts that JH action will depend on the mode of genetic control, whether single locus or polygenic. Our own studies of the soapberry bug, Jadera haematoloma, reveal a four-morph wing polymorphism in a species rapidly evolving on a new host plant. There are long- and short-winged forms, and the long-winged form displays three degrees of flight muscle histolysis. The polymorphism is subject to both genetic and environmental variations that are mediated by JH. Application of methoprene increases the frequency of the short-winged forms, but there is both within- and between-population genetic variation and genotype by environment interaction (plasticity) in the response to JH. Arch. Insect Biochem. Physiol. 35:359–373, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Abstract. Hormonal factors influencing reproductive development were examined in adult boll weevils, Anthonomus grandis (Boheman) (Coleoptera: Curculionidae). Long-day, high-temperature rearing conditions promote reproduction whereas short-day, low-temperature conditions do not. Implants of corpora allata (CA), brains, or brains plus retrocerebral complexes taken from long-day donors, or hormone analogue treatments were used to examine onset of vitellogenin synthesis and uptake in decapitated bodies of adult weevils reared in short-day, low-temperature conditions. Weevils decapitated within 2 days after eclosion and reared in short-day, low-temperature conditions never initiated vitellogenin production or ovarian development. Females and males decapitated on day 2 showed haemolymph vitellogenin within 5 days following treatment with Juvenile Hormone (JH) analogue or implantation of CA, but not after implantation of brain alone or implantation of muscle (sham). Uptake of vitellogenin into the oocytes did not occur unless both JH analogue and brain were given as replacement therapy. These experiments indicated that JH is necessary and sufficient to stimulate vitellogenin synthesis in this species but that a brain factor must be present for vitellogenin uptake.  相似文献   

6.
Although, in many insects, migration imposes a cost in terms of timing or amount of reproduction, in the migratory grasshopper Melanoplus sanguinipes performance of long-duration flight to voluntary cessation or exhaustion accelerates the onset of first reproduction and enhances reproductive success over the entire lifetime of the insect. Since juvenile hormone (JH) is involved in the control of reproduction in most species, we examined JH titer after long flight using a chiral selective radioimmunoassay. JH levels increased on days 5 and 8 in animals flown to exhaustion on day 4 but not in 1-h or non-flier controls. No difference was seen in the diel pattern of JH titer, but hemolymph samples were taken between 5 and 7 h after lights on. Treatment of grasshoppers with JH-III mimicked the effect of long-duration flight in the induction of early reproduction. The increased JH titer induced by performance of long-duration flight is thus at least one component of flight-enhanced reproduction. To test the possibility that post-flight JH titer increases are caused by adipokinetic hormone (AKH) released during long flights, a series of injections of physiological doses of Lom-AKH I were given to unflown animals to simulate AKH release during long flight. This treatment had no effect on JH titers. Thus, although AKH is released during flight and controls lipid mobilization, it is not the factor responsible for increased JH titers after long-duration flight.  相似文献   

7.
Caste differentiation in termites depends on complex hormonal changes during postembryonic development. Juvenile hormone (JH) is a central player in this process. The present study examined histological changes in the main hormone-producing endocrine glands, the corpora allata and molt glands, in the Japanese dampwood termite Hodotermopsis sjostedti. We focused on the soldier caste differentiation pathway, which can be induced artificially using an analogue of JH. The corpora allata exhibited volumetric changes during soldier induction, reflecting variations in the quantity of cytoplasm. Corpora allata from alates and neotenics clearly showed differentiation accompanied by cell proliferation, preparing for the high-level JH production necessary for reproduction. However, the volume increase of corpora allata was not always correlated to high JH titers. In contrast, molt glands degenerated in the reproductive castes. The JH analogue induced hypertrophy of the molt glands, along with the formation of lacunae, possibly related to ecdysteroid production. The JH analogue effect, inducing soldier differentiation, was suggested to require both mimic of high JH titers and stimulation of the molt glands. Received 12 November 2007; revised 2 June 2008; accepted 14 July 2008.  相似文献   

8.
Treatment of newly emerged adult Oncopeltus fasciatus with the corpus allatum inhibitors. 7-methoxy-2,2-dimethyl chromene or 6,7-dimethoxy-2,2-dimethyl chromene (preocene I and II) results in an inhibition of long-term flight (presumed migratory) behaviour in both males and females and inhibition of oögenesis in females. Treatment of reproductive females with precocene briefly stimulates flight behaviour (which ceases in such females as oviposition begins) and then subsequently inhibits it. Oviposition also ceases in such females and oöcyte resorption occurs. Topical application or injections of JH III to precocenetreated animals results in immediate restoration of the tendency to make long tethered flights while corpora cardiaca extract injections, corpora cardiaca implantation, sham implantation, sham injections and sham topical applications were ineffective in restoring prolonged flight behaviour to precocene-treated animals.Restoration of flight by JH III injection was observed within 1 hr after treatment with the hormone. These results indicate that JH is necessary for prolonged flight and presumably migratory behaviour in this species and its stimulatory effect on flight behaviour is immediate. Possible mechanisms of action of the hormone on flight behaviour are discussed.  相似文献   

9.
Termite queens are highly specialized for reproduction, but little is known about the endocrine mechanisms regulating this ability. We studied changes in the endocrinology and ovarian maturation in primary reproductive females of the dampwood termite Zootermopsis angusticollis following their release from inhibitory stimuli produced by mature queens. Winged alates were removed from their natal nest, manually dewinged, then paired in an isolated nest with a reproductive male. Development was tracked by monitoring ovarian development, in vitro rates of juvenile hormone (JH) production by corpora allata, and hemolymph titers of JH and ecdysteroids. The production rate and titer of JH were positively correlated with each other but negatively correlated with ecdysteroid titer. Four days after disinhibition, JH release and titer decreased while ecdysteroid titer increased. The new levels persisted until day 30, after which JH increased and ecdysteroids decreased. Fully mature queens had the highest rates of JH production, the lowest ecdysteroid titers, and the greatest number of functional ovarioles. The results support the hypothesis that JH plays a dual role in termite queens depending on their stage of development; an elevated JH titer in immature alates may maintain reproductive inhibition, but an elevated JH titer in mature queens may stimulate ovarian activity. The decline in JH production and the elevation in ecdysteroid titer correspond to a period of physiological reorganization and activation. The specific function of ecdysteroids is unknown but they may help to modulate the activity of the corpora allata.  相似文献   

10.
飞行对粘虫体内甘油酯积累与咽侧体活性的影响   总被引:2,自引:0,他引:2  
研究了粘虫Mythimna separata (Walker)成虫飞行对甘油酯的恢复、保幼激素的滴度及飞行肌降解的影响, 结果表明,不同日龄粘虫的飞行活动对其能源物质的积累及保幼激素分泌产生不同的影响。1日龄蛾的飞行对粘虫这两方面产生的影响最大,其飞行个体能源物质的积累明显高于未飞行的对照个体; 3日龄飞行个体的能源物质积累与对照相当; 但5日龄飞行个体则很难达到对照水平。1日龄飞行个体咽侧体活性在36 h后明显高于对照,60 h后已是对照的10倍,108 h达到其峰值; 3日龄飞行个体咽侧体的活性稍高于对照,但差别不显著; 5日龄飞行个体的咽侧体活性则稍低于对照。不同日龄飞行对飞行肌的降解也产生不同的影响。1日龄飞行个体的飞行肌在飞行后6 天已经明显低于对照。3、5日龄的飞行活动对其飞行肌降解的影响不明显。因此推测,粘虫咽侧体活化的关键时期可能在羽化后1~3 天之间。  相似文献   

11.
In adult female cockroaches, the ovary greatly affects the synthesis of Juvenile Hormone (JH) by the corpora allata, and in females of some cockroach species, removal of the ovaries results in a permanent depression of JH synthesis. We report that the corpora allata in ovariectomised, adult virgins of the German cockroach, Blattella germanica (L.), increase and then decrease in activity, as they do in intact females. Moreover, the distal tubules in the left colleterial glands of ovariectomised females accumulate abundant protein, the production of which is regulated by JH. In both ovariectomised and sham‐operated females, the activity of the corpora allata more than tripled between days 1 and 4 of adulthood, during which the oöcytes of sham‐operated females grew considerably in length. The corpora allata of sham‐operated females produced even more JH on day 7, but very little on day 10, by which time all females had oviposited. The glands of ovariectomised females, by constrast, produced a similar amount of JH on day 7 as on day 4, but much less on day 10. Beginning on day 13, the activity of the corpora allata increased again in ovariectomised females, an increase that did not occur until day 22 in sham‐operated females. Mating of ovariectomised females on day 6 resulted in a significant increase in the activity of the corpora allata by day 10. We conclude that both the ovary and mating stimulate the synthesis of JH early in the reproductive cycle, but that neither is needed for the occurrence of a complete cycle of JH synthesis.  相似文献   

12.
InMenida scotti aduts which mate during hibernation, we examined the effect of photoperiod on diapause induction in terms of the developmental degree of reproductive organs and corpora allata. In a hibernating population, mating season and physiological changes related to dipause were investigated. When newly emerged adults were reared under long- or short-day conditions, reservoir of the ectodermal accessory gland and corpora allata in males developed, while the developments of ovary and corpora allata in females were suppressed under both conditions. This suggests that diapause of this species is induced only in females independently photoperiodic conditions during adult stage. In a hibernating population, mating was observed from early to late November and from late March to early May. Observations of the development of reproductive organs and corpora allata suggest that diapause is induced only in females in the former period, while both sexes are not in diapause in the latter period.  相似文献   

13.
Methyl farnesoate (MF) and juvenile hormone (JH III), which bind with high affinity to the receptors USP and MET, respectively, and bisepoxy JH III (bisJH III) were assessed for several activities during Drosophila larval development, and during prepupal development to eclosed adults. Dietary MF and JH III were similarly active, and more active than bisJH III, in lengthening larval development prior to pupariation. However, the order of activity was changed (JH III > bisJH III > MF) with respect to preventing prepupae from eclosing as normal adults, whether administered in the larval diet or as topically applied at the white puparium stage. If endogenous production of all three larval methyl farnesoids was suppressed by a strongly driven RNAi against HMGCR in the corpora allata cells, most larvae did not attain pupariation. Farnesol (which has no demonstrated life-necessary function in larval life except in corpora allata cells as a precursor to methyl farnesoid biosynthesis) when incorporated into the diet rescued attainment of pupariation in a dose-dependent manner, presumably by rescuing endogenous production of all three hormones. A more mild suppression of endogenous methyl farnesoid production enabled larval attainment of pupariation. However, in this background dietary MF had increased activity in preventing puparia from attaining normal adult eclosion. The physiological relevance of using exogenous methyl farnesoids to block prepupal development to normally eclosed adults was tested by, instead, protecting in prepupae the endogenous titer of methyl farnesoids. JH esterase normally increases during the mid-late prepupal stage, presumably to clear endogenous methyl farnesoids. When JH esterase was inhibited with an RNAi, it prevented attainment of adult eclosion. Cultured adult corpora allata from male and female Aedes aegypti released both MF and JH III, and the A. aegypti nuclear receptor USP bound MF with nanomolar affinity. These A. aegypti data support the use of Drosophila as a model for mosquitoes of the binding of secreted MF to USP.  相似文献   

14.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. JH titer decreases in the last instar larvae allowing pupation and metamorphosis to progress. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which plays an essential role orchestrating reproductive maturation. 20-hydroxyecdysone (20E) prepares the pupae for ecdysis, and would be an ideal candidate to direct a developmental program in the CA of the pharate adult mosquito. In this study, we provide evidence that 20E acts as an age-linked hormonal signal, directing CA activation in the mosquito pupae. Stimulation of the inactive brain-corpora allata-corpora cardiaca complex (Br-CA-CC) of the early pupa (24 h before adult eclosion or −24 h) in vitro with 20E resulted in a remarkable increase in JH biosynthesis, as well as increase in the activity of juvenile hormone acid methyltransferase (JHAMT). Addition of methyl farnesoate but not farnesoic acid also stimulated JH synthesis by the Br-CA-CC of the −24 h pupae, proving that epoxidase activity is present, but not JHAMT activity. Separation of the CA-CC complex from the brain (denervation) in the −24 h pupae also activated JH synthesis. Our results suggest that an increase in 20E titer might override an inhibitory effect of the brain on JH synthesis, phenocopying denervation. All together these findings provide compelling evidence that 20E acts as a developmental signal that ensures proper reactivation of JH synthesis in the mosquito pupae.  相似文献   

15.
Long-distance migration is often associated with relatively short breeding seasons and a start of reproductive activities shortly after arrival. The full activation of the reproductive system from the regressed state takes, however, several weeks and must, therefore, be initiated in the winter quarters or during spring migration. Hence, long-distance migrants face a potential conflict between the energetic and temporal requirements of migration and the preparation for reproduction. We studied long-distance migratory Siberian stonechats in northern Kazakhstan and short- distance migratory European stonechats in Slovakia. We hypothesized that migratory distance and gonadal status at the time of arrival are related. We found that males of both populations arrived with gonads that were not fully developed. However, the populations neither differed in gonadal state at the time of arrival, nor in the rate of testicular development to the fully active state at the time of egg laying. The rate of the last stages of gonadal development may be determined by physiological constraints rather than by a trade-off between migration and reproduction. Within populations, passage migrants and local breeders could not be distinguished on the basis of their testicular development. However, passage migrants showed higher variation in gonadal size than local breeders, which could relate to the differences in migratory distance and hence reproductive timing.  相似文献   

16.
Applied Entomology and Zoology - Juvenile hormone (JH) has crucial roles in insect physiology, including development, reproduction, and polyphenism. JH is synthesized in the corpora allata (CA)...  相似文献   

17.
Juvenile hormone III biosynthesis by corpora allata of adult female Leucophaea maderae was measured by an in vitro radiochemical assay. In fed females, JH III synthesis increases more than 20-fold after mating to a peak of 55 pmol/pair/h on day 9 and then rapidly declines. This increase in JH III synthesis concomitant with rapid oocyte growth in mated females is not observed in virgin females. The corpora allata from starved, virgin females appear to be inactive. The addition of 150 microM 2E,6E-farnesol (a) JH III precursor) to the incubation medium stimulates the corpora allata from starved, virgin females less than the corpora allata from starved, mated females. Both feeding and mating are necessary for the expression of a normal cycle of JH III synthesis in this cockroach.  相似文献   

18.
Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca2+ stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.  相似文献   

19.
20.
Studies were conducted on the physiological and hormonal changes following the release of alates from developmentally suppressive pheromones produced by mature queens of the fire ant Solenopsis invicta Buren. Winged virgin queens were removed from the pheromonal signal and placed in colony fragments. The time for dealation, degree of ovarian development, and biosynthesis rate and whole body content of juvenile hormone (JH) were measured. The production rate and content of JH were highly correlated. Dealation and the initiation of oviposition corresponded to peak production of JH. JH production rose sharply following separation from the natal nest, peaking after 3 days. After 8 days of isolation, JH production gradually subsided to levels similar to that found in pre-release queens, but began to increase again after 12 days. Mature queens had highly elevated levels of JH relative to recently dealate females, probably reflecting the increased reproductive capability of these older females. The results support the hypothesis that the pheromone released by functional queens inhibits reproduction in virgin alates by suppressing corpora allata activity and the production of JH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号