首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
曹强坚  李威 《生物磁学》2011,(11):2190-2193
黑斑息肉综合征(Peutz-Jeghers syndrome,PJS)是一种以皮肤黏膜色素沉着斑、胃肠道多发息肉、家族遗传性为主要特点的常染色体显性遗传病,随着息肉体积增大,患者年龄增加,消化系统及生殖系统等恶性肿瘤发病率明显增加,主要致病基因为19号染色体短臂上的LKB1/STK11(丝氨酸/苏氨酸激酶)基因,是一种肿瘤易感综合征,临床应及早处理胃肠道息肉及密切随访观察,预防恶性肿瘤的发生及早期诊治,减少PJS带来的危害。  相似文献   

2.
黑斑息肉综合征(Peutz-Jeghers syndrome,PJS)是一种以皮肤黏膜色素沉着斑、胃肠道多发息肉、家族遗传性为主要特点的常染色体显性遗传病,随着息肉体积增大,患者年龄增加,消化系统及生殖系统等恶性肿瘤发病率明显增加,主要致病基因为19号染色体短臂上的LKB1/STK11(丝氨酸/苏氨酸激酶)基因,是一种肿瘤易感综合征,临床应及早处理胃肠道息肉及密切随访观察,预防恶性肿瘤的发生及早期诊治,减少PJS带来的危害。  相似文献   

3.
Pathogenic mutations in the serine/threonine kinase STK11 (alias LKB1) cause Peutz-Jeghers syndrome (PJS) in most affected individuals. However, in a considerable number of PJS-patients mutations cannot be detected in STK11 suggesting genetic heterogeneity. One PJS family without STK11 mutations (PJS07) has previously been described with significant evidence for linkage to a second potential PJS locus on 19q13.3-->q13.4. In this study we investigated candidate genes within markers D19S180 and D19S254, since multipoint linkage analysis yielded significant LOD scores for this region in this family. Four genes in the region (cytohesin 2: PSCD2, kallikrein 10: KLK10, protein kinase C gamma: PRKCG, and serine/threonine kinase 13: STK13) potentially involved in growth inhibitory pathways or in the pathophysiology of can- cer, were considered as candidates. We first determined the genomic structure of the PSCD2 and PRKCG genes, and performed mutation analysis of all exons and exon-intron junctions of the four genes, in the PJS07 family. No pathogenic mutation was identified in these four genes in affected individuals. A very rare polymorphism resulting in a conserved amino acid change Lys to Arg was found in PSCD2. These data provide considerable evidence for exclusion of these four genes as candidates for the second locus on 19q13.3-->q13.4 in PJS. Finally, we also excluded the recently identified STK11-interacting protein gene (STK11IP, alias LIP1) mapped in 2q36 as candidate for PJS in the PJS07 family, although this could be a good candidate in other non-STK11/LKB1 families.  相似文献   

4.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. There is an increased risk of benign and malignant tumors in the gastrointestinal tract and in extraintestinal tissues. One PJS locus has been mapped to chromosome 19p13.3; a second locus is suspected on chromosome 19q13.4 in a minority of families. The PJS gene on 19p13.3 has recently been cloned, and it encodes the serine/threonine kinase LKB1. The gene, which is ubiquitously expressed, is composed of 10 exons spanning 23 kb. Several LKB1 mutations have been reported in heterozygosity in PJS patients. In this study, we screened for LKB1 mutations in nine PJS families of American, Spanish, Portuguese, French, Turkish, and Indian origin and detected seven novel mutations. These included two frameshift mutations, one four-amino-acid deletion, two amino-acid substitutions, and two splicing errors. Expression of mutant LKB1 proteins (K78I, D176N, W308C, and L67P) and assessment of their autophosphorylation activity revealed a loss of the kinase activity in all of these mutants. These results provide direct evidence that the elimination of the kinase activity of LKB1 is probably responsible for the development of the PJS phenotypes. In two Indian families, we failed to detect any LKB1 mutation; in one of these families, we previously had detected linkage to markers on 19q13.3-4, which suggests locus heterogeneity of PJS. The elucidation of the molecular etiology of PJS and the positional cloning of the second potential PJS gene will further elucidate the involvement of kinases/phosphatases in the development of cancer-predisposing syndromes.  相似文献   

5.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease with variable expression and incomplete penetrance, characterized by mucocutaneous pigmentation and hamartomatous polyposis. Patients with PJS have increased frequency of gastrointestinal and extraintestinal malignancies (ovaries, testes, and breast). In order to map the locus (or loci) associated with PJS, we performed a genomewide linkage analysis, using DNA polymorphisms in six families (two from Spain, two from India, one from the United States, and one from Portugal) comprising a total of 93 individuals, including 39 affected and 48 unaffected individuals and 6 individuals with unknown status. During this study, localization of a PJS gene to 19p13.3 (around marker D19S886) had been reported elsewhere. For our families, marker D19S886 yielded a maximum LOD score of 4.74 at a recombination fraction (theta) of .045; multipoint linkage analysis resulted in a LOD score of 7.51 for the interval between D19S886 and 19 pter. However, markers on 19q13.4 also showed significant evidence for linkage. For example, D19S880 resulted in a maximum LOD score of 3.8 at theta = .13. Most of this positive linkage was contributed by a single family, PJS07. These results confirm the mapping of a common PJS locus on 19p13.3 but also suggest the existence, in a minority of families, of a potential second PJS locus, on 19q13.4. Positional cloning and characterization of the PJS mutations will clarify the genetics of the syndrome and the implication of the gene(s) in the predisposition to neoplasias.  相似文献   

6.
We report a molecular cytogenetic characterization of 17p13.3 deletion syndrome by array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) in a fetus with lissencephaly, corpus callosum dysgenesis, ventriculomegaly, microcephaly, intrauterine growth restriction (IUGR), polyhydramnios and single umbilical artery. aCGH analysis revealed a 3.17-Mb deletion at 17p13.3, or arr [hg19] 17p13.3 (0–3,165,530)×1. The qPCR assays revealed a maternal origin of the deletion. Metaphase FISH analysis detected the absence of the LIS1 probe signal on the aberrant chromosome 17. The karyotype was 46,XX,del(17)(p13.3). We review the literature of chromosome 17p13.3 deletion syndrome with prenatal findings and diagnosis, and suggest that prenatal ultrasound detection of central nervous system anomalies such as lissencephaly, corpus callosum dysgenesis/agenesis, ventriculomegaly and microcephaly associated with IUGR, polyhydramnios, congenital heart defects, abdominal wall defects and renal abnormalities should include a differential diagnosis of chromosome 17p13.3 deletion syndrome.  相似文献   

7.
Mutations in the serine/threonine kinase STK11 lead to Peutz-Jeghers syndrome (PJS) in a subset of affected individuals. Significant evidence for linkage to a second potential PJS disease locus on 19q13.4 has previously been described in one PJS family (PJS07). In the current study, we investigated this second locus for PJS gene candidates. We mapped the main candidate gene in this region, the gene for the transmembrane-type protein tyrosine phosphatase H (PTPRH), within 15 kb telomeric to the marker D19S880. We determined its genomic structure, and performed mutation analysis of all exons and the exon-intron junctions of the PTPRH gene in the PJS07 family. No disease causing mutation was identified in PTPRH in affected individuals, suggesting the existence of an as yet not identified gene on 19q13.4 as a second PJS gene.  相似文献   

8.
Stratakis CA 《Hormone research》2000,54(5-6):334-343
Peutz-Jeghers syndrome (PJS, #175200) and Carney complex (CNC, OMIM#160980) are the two most common multiple neoplasia syndromes associated with lentiginosis. Both disorders are inherited in an autosomal dominant manner and they have recently been elucidated at the molecular level. PJS and CNC share manifestations with Cowden syndrome (or Cowden disease) (CS, OMIM#158350) and Bannayan-Riley-Ruvalcaba syndrome (BRR, OMIM#153480). The endocrine tumors of CS and PJS, which could classify these disorders as variant types of multiple endocrine neoplasias (MENs), are not present in most CS and BRR patients, but lentigines are shared by PJS, CNC and BRR. The serine-threonine kinase STK11 (or LKB1), located on 19p13, is mutated in more than half of all PJS kindreds. The R1alpha subunit of c-AMP-dependent protein kinase A, located on 17q22-24, is mutated in 40% of CNC kindreds. The protein phosphatase PTEN is mutated in most cases of CS and in almost 50% of BRR kindreds, despite significant clinical heterogeneity in these syndromes. The molecular elucidation of the lentiginoses and their related syndromes identifies new pathways of growth control and cellular regulation that are important for endocrine signaling, tumorigenesis, cutaneous function and embryonic development.  相似文献   

9.
The contiguous gene syndrome involving 8p11.2 is recognized as a combined phenotype of both Kallmann syndrome and hereditary spherocytosis, because the genes responsible for these 2 clinical entities, the fibroblast growth factor receptor 1 (FGFR1) and ankyrin 1 (ANK1) genes, respectively, are located in this region within a distance of 3.2Mb. We identified a 3.7Mb deletion of 8p11.2 in a 19-month-old female patient with hereditary spherocytosis. The identified deletion included ANK1, but not FGFR1, which is consistent with the absence of any phenotype or laboratory findings of Kallmann syndrome. Compared with the previous studies, the deletion identified in this study was located on the proximal end of 8p, indicating a pure interstitial deletion of 8p11.21. This patient exhibited mild developmental delay and distinctive facial findings in addition to hereditary spherocytosis. Thus, some of the genes included in the deleted region would be related to these symptoms.  相似文献   

10.
Trisomy of the short arm of chromosome 17 (T17P) is a genomic disorder presenting with growth retardation, motor and mental retardation and constitutional physical anomalies including congenital heart defects. Here we report a case of near-complete T17P of which the genomic dosage aberrations were delineated by chromosomal microarray along with conventional diagnostic modalities. A 9-year-old Korean boy was admitted because of esophageal obstruction. He showed clinical manifestations of T17P, along with atypical features of scoliosis, corpus callosum agenesis, and seizure. Chromosome analyses revealed an inverted duplication of the chromosomal segment between 17p11.2 and 17p13.3. Chromosomal microarray revealed a duplication of the most of the short arm of chromosome 17 (size ~ 19.09 Mb) along with a cryptic deletion of a small segment of 17p terminal end (17pter) (~ 261 Kb). This is the first report of molecular characterization of near-complete T17P from inverted duplication in association with 17pter microdeletion. The fine delineation of the extent of genomic aberration by SNP-based microarray could help us better understand the molecular mechanism and genotype–phenotype correlations in T17P syndrome.  相似文献   

11.
Peutz-Jeghers Syndrome (PJS) is an autosomal dominant hereditary disease characterized by hamartomatous polyposis involving the entire bowel. Recently STK11, a gene bearing a mutation responsible for PJS, was isolated. We investigated the entire coding region of STK11 in 15 unrelated PJS families by the PCR-SSCP (polymerase chain reaction-single strand conformation polymorphism) method and PCR-direct sequence analysis, and found nine different, novel mutations among ten of those families. One nonsense mutation and five different frameshift mutations (two families carried the same mutation), all of which would cause truncation of the gene product, were found in seven families; mutations found in five families were clustered within exon 6. Among these five mutations, three occurred at the mononucleotide-repeat region (CCCCCC) of codons 279–281, suggesting that this region is likely to be a mutational hotspot of this gene. One of the remaining three families carried a 3-bp in-frame deletion that would eliminate an asparagine residue within a kinase domain of the product; the other two carried intronic mutations at or adjacent to the consensus dinucleotide sequences of splice-acceptor or -donor sites, which were likely to lead to aberrant splicing. Received: 9 March 1998 / Accepted: 1 May 1998  相似文献   

12.
The Peutz–Jeghers Syndrome (PJS) is an autosomal dominant polyposis disorder with increased risk of multiple cancers. STK11/LKB1 (hereafter named STK11) germline mutations account for the large majority of PJS cases whereas large deletions account for about 30% of the cases. We report here the first thorough molecular characterization of 15 large deletions identified in a cohort of 51 clinically well-characterized PJS patients. The deletions were identified by MLPA analysis and characterized by custom CGH-array and quantitative PCR to define their boundaries. The deletions, ranging from 2.9 to 180 kb, removed one or more loci contiguous to the STK11 gene in six patients, while partial STK11 gene deletions were present in the remaining nine cases. By means of DNA sequencing, we were able to precisely characterize the breakpoints in each case. Of the 30 breakpoints, 16 were located in Alu elements, revealing non-allelic homologous recombination (NAHR) as the putative mechanism for the deletions of the STK11 gene, which lays in a region with high Alu density. In the remaining cases, other mechanisms could be hypothesized, such as microhomology-mediated end-joining (MMEJ) or non-homologous end-joining (NHEJ). In conclusion we here demonstrated the non-random occurrence of large deletions associated with PJS. All our patients had a classical PJS phenotype, which shows that haploinsufficiency for SBNO2, C19orf26, ATP5D, MIDN, C19orf23, CIRBP, C19orf24,and EFNA2, does not apparently affect their clinical phenotype.  相似文献   

13.
Mowat-Wilson syndrome is a mental retardation-multiple congenital anomaly syndrome characterized by a typical facies, developmental delay, epilepsy, and variable congenital malformations, including Hirschsprung disease, urogenital anomalies, congenital heart disease, and agenesis of the corpus callosum. This disorder is sporadic and is caused by heterozygous mutations or deletions of the ZFHX1B gene located in the 2q22 region. We report here the first Moroccan patient, born to consanguineous parents, with Mowat-Wilson syndrome, due to a de novo, unreported mutation of the ZFHX1B gene.  相似文献   

14.
Nance-Horan Syndrome (NHS) is a rare X-linked syndrome characterized by congenital cataract which leads to profound vision loss, characteristic dysmorphic features and specific dental anomalies. Microcornea, microphthalmia and mild or moderate mental retardation may accompany these features. Heterozygous females often manifest similarly but with less severe features than affected males. We describe two brothers who have the NHS phenotype and their carrier mother who had microcornea but not cataract. We identified a previously unreported frameshift mutation (c.558insA) in exon 1 of the NHS gene in these patients and their mother which is predicted to result in the incorporation of 11 aberrant amino acids prior to a stop codon (p.E186Efs11X). We also discussed genotype–phenotype correlation according to relevant literature.  相似文献   

15.
16.
Dyggve-Melchior-Clausen (DMC) syndrome is a rare autosomal recessive disorder. It is a spondyloepimetaphyseal dysplasia associated with mental retardation. Clinical manifestations include coarse facies, microcephaly, short trunk dwarfism, and mental retardation. Mutations in Dymeclin gene (DYM), mapped to chromosome 18q21.1, is responsible for DMC. We report here the observation of a consanguineous Moroccan patient having DMC syndrome. The molecular studies showed a previously reported homozygous mutation at c.1878delA of DYM gene. We discuss this recurrent mutation in Moroccan patients with DMC syndrome with a review.  相似文献   

17.
A 10-year-old speechless, mentally deficient male, with low arylsulfatase A (ARSA) activity, and presumably, methachromatic leukodystrophy, underwent genetic evaluation. As the clinical picture was not compatible with this diagnosisan ARSA gene and chromosome analysis were performed, showing the presence of a pseudodeficiency ARSA allele and a de novo apparently balanced t(16;22)(p11.2;q13) translocation. A deletion on the long arm of chromosome 22 encompassing the ARSA gene, as shown by FISH and array-CGH, indicated a 22q13 deletion syndrome. This case illustrates the importance of detailed cytogenetic investigation in patients presenting low arylsulfatase A activity and atypical/unspecific clinical features.  相似文献   

18.
Lai AH  Brett MS  Chin WH  Lim EC  Ng JS  Tan EC 《Gene》2012,499(1):182-185
We report a girl with Rubinstein-Taybi syndrome (RSTS) who was found to have copy number loss on 16p13.3 by array-CGH. She has developmental delay and other features of RSTS including downslanting palpebral fissures, a prominent nose with the nasal septum extending below the alae nasi, broad thumbs and big toes, postaxial polydactyly of the right foot and constipation from birth. We report the junction sequence across the breakpoint region for a microdeletion in RSTS. The sequencing results also showed that the deletion was 81.4kb involving three genes DNASE 1, TRAP 1, and CREBBP.  相似文献   

19.
CHARGE syndrome is an autosomal dominant inherited disorder characterized by a specific and recognizable pattern of anomalies. De novo mutations or deletions of the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. In this report, we describe a patient with a typical phenotype characterized by psychomotor retardation, hypertrichosis, facial asymmetry, synophria, failure to thrive, developmental delay and gastro-esophageal reflux, carrying a de novo 6.04 Mb interstitial deletion in 8q12.1q12.3 detected by single nucleotide polymorphism (SNP) array analysis. Despite the deletion includes CHD7 and although the patient shares some of the clinical features of the CHARGE syndrome, she does not fulfill the clinical criteria for this syndrome. To the best of our knowledge, this is the second case with an entire deletion of the CHD7 gene not leading to CHARGE syndrome and, for this reason, useful to expand and further delineate the clinical features associated with the 8q12.1q12.3 deletion. Furthermore, the literature review revealed that the phenotype secondary to duplications of the same region partially overlaps with the phenotype reported in this study. Selected genes that are present in the hemizygous state and which might be important for the phenotype of this patient, are discussed in context of the clinical features.  相似文献   

20.
In the accompanying paper, a chromosomal localization of the Rubinstein-Taybi syndrome by cytogenetic investigations with fluorescence in situ hybridization techniques at chromosome 16p13.3 is described. We investigated 19 of these patients and their parents (a) to ascertain the parental origin of the chromosome with the deletion in families where such a deletion was detected, (b) to disclose whether uniparental disomy plays a role in etiology, and (c) to compare clinical features in patients with a deletion to those in individuals in whom deletions were not detectable. Molecular studies showed a copy of chromosome 16 from each parent in all 19 patients. Uniparental disomy was also excluded for five other chromosome arms known to be imprinted in mice. None of the probes used for determining the origin of the deleted chromosome proved to be informative. The clinical features were essentially the same in patients with and without visible deletion, with a possible exception for the incidence of microcephaly, angulation of thumbs and halluces, and partial duplication of the halluces. A small deletion at 16p13.3 may be found in some patients with Rubinstein-Taybi syndrome. Cytogenetically undetectable deletions, point mutations, mosaicism, heterogeneity, or phenocopy by a nongenetic cause are the most probable explanations for the absence of cytogenetic or molecular abnormalities in other patients with Rubinstein-Taybi syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号