首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary: I examined the use of a mark-recapture technique to measure colony size and colony growth in the ant species Formica neorufibarbis. I addressed three questions: 1) Is the method reasonably accurate?, 2) is the method precise?, and 3) how many workers does the method kill? I found that estimates of colony sizes based on mark-recapture were similar to those estimated by colony excavation. The error in estimates of worker and cocoon number due to the binomial nature of the mark-recapture method was relatively small, with a mean coefficient of variation of twelve percent for workers and nine percent for cocoons. I estimated that the method killed less than two percent of the workers in a nest.  相似文献   

2.
Several challenges exist in ichnotaxonomy: overcoming the perceived distinction between invertebrate and vertebrate ichnotaxonomy, standardizing terminology, rationalizing the plethora of ichnotaxa already in existence, and developing principles for diagnosing new ichnotaxa. Ichnotaxa should be based on morphology, and this morphology incorporates three key components; the behaviour expressed, the producer, and the substrate. Invertebrate and vertebrate ichnotaxa can both be accommodated within this framework, but they differ in the relative contributions of these components. The key to justifying the synonymy of existing ichnotaxa is the recognition of intergrading specimens. However, this is only the case for minor morphological variants (i.e. those representing minor differences in behaviour, such as gait parameters or stance; or minor differences in preservation, such as undertrack fallout or slight differences in substrate conditions). Intergrading specimens should not be used to justify synonymy between major morphological variants (i.e. those representing major behavioural differences, defined herein as ethological categories; or major differences in preservation, such as formation in soup, soft and firmgrounds), and such specimens should be denoted as hybrids (e.g. Cruziana × Rusophycus ). New ichnotaxa should ideally be based on observations of large samples of material, so that recurrence is demonstrable, and morphological continuums, or subset relationships, representing minor morphological variation, are identified. Ichnotaxa may only be erected on the basis of limited material if they truly represent a unique morphology. These principles have been developed with arthropod trackways in mind, but it is hoped that they will be of more general utility.  相似文献   

3.
Photosynthetic organisms are among the earliest life forms on earth and their biochemistry is strictly dependent on a wide range of inorganic nutrients owing to the use of metal cofactor-dependent enzymes in photosynthesis, respiration, inorganic nitrogen and sulfur assimilation. Chlamydomonas reinhardtii is a photosynthetic eukaryotic model organism for the study of trace metal homeostasis. Chlamydomonas spp. are widely distributed and can be found in soil, glaciers, acid mines and sewage ponds, suggesting that the genus has significant capacity for acclimation to micronutrient availability. Analysis of the draft genome indicates that metal homeostasis mechanisms in Chlamydomonas represent a blend of mechanisms operating in animals, plants and microbes. A combination of classical genetics, differential expression and genomic analysis has led to the identification of homologues of components known to operate in fungi and animals (e.g., Fox1, Ftr1, Fre1, Fer1, Ctr1/2) as well as novel molecules involved in copper and iron nutrition (Crr1, Fea1/2). Besides activating iron assimilation pathways, iron-deficient Chlamydomonas cells re-adjust metabolism by reducing light delivery to photosystem I (to avoid photo-oxidative damage resulting from compromised FeS clusters) and by modifying the ferredoxin profile (perhaps to accommodate preferential allocation of reducing equivalents). Up-regulation of a MnSOD isoform may compensate for loss of FeSOD. Ferritin could function to buffer the iron released from programmed degradation of iron-containing enzymes in the chloroplast. Some metabolic adjustments are made in anticipation of deficiency while others occur only with sustained or severe deficiency. Copper-deficient Chlamydomonas cells induce a copper assimilation pathway consisting of a cell surface reductase and a Cu(+) transporter (presumed CTR homologue). There are metabolic adaptations in addition: the synthesis of "back-up" enzymes for plastocyanin in photosynthesis and the ferroxidase in iron assimilation plus activation of alternative oxidase to handle the electron "overflow" resulting from reduced cytochrome oxidase function. Oxygen-dependent enzymes in the tetrapyrrole pathway (coproporphyrinogen oxidase and aerobic oxidative cyclase) are also increased in expression and activity by as much as 10-fold but the connection between copper nutrition and tetrapyrroles is not understood. The copper-deficiency responses are mediated by copper response elements that are defined by a GTAC core sequence and a novel metalloregulator, Crr1, which uses a zinc-dependent SBP domain to bind to the CuRE. The Chlamydomonas model is ideal for future investigation of nutritional manganese deficiency and selenoenzyme function. It is also suited for studies of trace nutrient interactions, nutrition-dependent metabolic changes, the relationship between photo-oxidative stress and metal homeostasis, and the important questions of differential allocation of limiting metal nutrients (e.g., to respiration vs. photosynthesis).  相似文献   

4.
5.
Ian Billick 《Oecologia》2002,132(2):244-249
While it is commonly assumed that variation in worker sizes within a single ant colony increases colony efficiency, there is little causal evidence of a link between worker size variation and colony performance. I tested whether the range of worker sizes within colonies of the ant species Formica neorufibarbis affected new worker production. Removing large workers from colonies lowered the rate of new worker production. A study of unmanipulated colonies indicated that colonies did not maintain a full range of worker sizes; mean worker head widths varied from 0.89-1.24 mm. Colonies naturally missing large workers did not have lower rates of worker production, suggesting that the relative size, not the absolute size, of workers within colonies was important. These are the first results to directly link the range of worker sizes to a component of colony fitness in a natural setting.  相似文献   

6.
Animals such as social insects that live in colonies can recognizeintruders from other colonies of the same or different speciesusing colony-specific odors. Such colony odors usually haveboth a genetic and an environmental origin. When within-colonyrelatedness is high (i.e., one or very few reproductive queens),colonies comprise genetically distinct entities, and recognitionbased on genetic cues is reliable. However, when nests containmultiple queens and colonies comprise multiple nests (polydomy),the use of purely genetically determined recognition labelsmay become impractical. This is due to high within-colony geneticheterogeneity and low between-colony genetic heterogeneity.This may favor the use of environmentally determined recognitionlabels. However, because nests within polydomous colonies maydiffer in their microenvironment, the use of environmental labelsmay also be impractical unless they are actively mixed amongthe nests. Using a laboratory experiment, we found that bothisolation per se and diet composition influenced the cuticularchemical profiles in workers of Formica aquilonia. In addition,the level of aggression increased when both the proportionsof dietary ingredients and the availability of food were altered.This suggests that increased aggression was mediated by changesin the chemical profile and that environmental cues can mediaterecognition between colonies. These results also suggest thatthe underlying recognition cues are mutable in response to extrinsicfactors such as the amount and the composition of food.  相似文献   

7.
The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40-60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap.  相似文献   

8.
Environmental variability can lead to dispersal: why stay put if it is better elsewhere? Without clues about local conditions, the optimal strategy is often to disperse a set fraction of offspring. Many habitats contain environmentally differing sub‐habitats. Is it adaptive for individuals to sense in which sub‐habitat they find themselves, using environmental clues, and respond plastically by altering the dispersal rates? This appears to be done by some plants which produce dimorphic seeds with differential dispersal properties in response to ambient temperature. Here we develop a mathematical model to show, that in highly variable environments, not only does sensing promote plasticity of dispersal morph ratio, individuals who can sense their sub‐habitat and respond in this way have an adaptive advantage over those who cannot. With a rise in environmental variability due to climate change, our understanding of how natural populations persist and respond to changes has become crucially important.  相似文献   

9.
Hypolithic microbial communities: between a rock and a hard place   总被引:1,自引:0,他引:1  
Drylands are the largest terrestrial biome on Earth and a ubiquitous feature is desert pavement terrain, comprising rocks embedded in the mineral soil surface. Quartz and other translucent rocks are common and microbial communities termed hypoliths develop as biofilms on their ventral surfaces. In extreme deserts these represent major concentrations of biomass, and are emerging as key to geobiological processes and soil stabilization. These highly specialized communities are dominated by cyanobacteria that support diverse heterotrophic assemblages. Here we identify global-scale trends in the ecology of hypoliths that are strongly related to climate, particularly with regard to shifts in cyanobacterial assemblages. A synthesis of available data revealed a linear trend for colonization with regard to climate, and we suggest potential application for hypoliths as 'biomarkers' of aridity on a landscape scale. The potential to exploit the soil-stabilizing properties of hypolithic colonization in environmental engineering on dryland soils is also discussed.  相似文献   

10.
As populations become increasingly fragmented, managers are often faced with the dilemma that intentional hybridization might save a population from inbreeding depression but it might also induce outbreeding depression. While empirical evidence for inbreeding depression is vastly greater than that for outbreeding depression, the available data suggest that risks of outbreeding, particularly in the second generation, are on par with the risks of inbreeding. Predicting the relative risks in any particular situation is complicated by variation among taxa, characters being measured, level of divergence between hybridizing populations, mating history, environmental conditions and the potential for inbreeding and outbreeding effects to be occurring simultaneously. Further work on consequences of interpopulation hybridization is sorely needed with particular emphasis on the taxonomic scope, the duration of fitness problems and the joint effects of inbreeding and outbreeding. Meanwhile, managers can minimize the risks of both inbreeding and outbreeding by using intentional hybridization only for populations clearly suffering from inbreeding depression, maximizing the genetic and adaptive similarity between populations, and testing the effects of hybridization for at least two generations whenever possible.  相似文献   

11.
1. Organisms face the difficult task of selecting an optimal new nest from the available options during relocation. Studies on honeybees and ants in their natural habitat indicate that scouts encounter multiple options that vary in their physical and biotic characteristics. 2. Architectural features, location, odour, and the presence of nest mates impact their choice of nest site selection. In order to examine the influence of diverse parameters on final nest site selection we conducted choice experiments on ants in the context of relocation. 3. After controlling for any influence by physical characteristics, we found that the presence of brood, adults, and colony odour acted as attractants with more colonies relocating into these new nests than expected by chance alone. In contrast, the presence of a reproductive female, or familiarity of location had no influence on the choice. New nests containing dead ants evoked cleaning responses from scouts, which may interfere with relocation into these nests. 4. Even although colonies consist of hundreds of adults and brood, colony integrity was maintained in 98.7% of colonies. Furthermore, we found that none of the eight studied colonies relocated when faced with minor flooding in their natural habitat, indicating that the cost of relocation is non‐trivial and that this species is capable of minor damage repairs. 5. These observations highlight the complexity of relocation in general, allow the characterisation of desirable nest attributes in this species, and highlight the need for similar exploration in other social insects.  相似文献   

12.
13.
Farmers’ opinions and concerns are rarely considered in public debates about the use of gene‐editing technologies to modify farm animals. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business

CRISPR‐Cas9, a new method for precisely modifying DNA, has received significant public attention in recent years. Heralded as a breakthrough technology to genetically modify organisms with hitherto unknown ease, precision and at low cost, CRISPR‐Cas9 has reignited controversies in science and society about the kind of genetic modifications that can and should be achieved in animals, plants and humans. Historically, such public debates have been particularly heated in two areas: human germline modification and agricultural applications. This article focuses on the latter and explores how small‐ and medium‐scale farmers evaluate the possibility and the potential benefits of gene editing livestock. This article importantly adds their voices to the discussion – voices that are surprisingly often unheard or ignored in public debates about using genetic technologies in agriculture.
… CRISPR‐Cas9 has reignited controversies in science and society about the kind of genetic modifications that can and should be achieved in animals, plants and humans.
  相似文献   

14.
Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected conflict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene flow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a five-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but significant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. For both types of colonies, there was very little genetic structuring above the level of the nest, with no sign of isolation by distance. These similarities in the breeding systems were associated with a complete lack of genetic differentiation between single- and multiple-queen colonies, which provides no support for the hypothesis that change in queen number leads to restricted gene flow between social forms. Overall, this study suggests that the higher rates of queen turnover, local mating, and population structuring that are often associated with multiple-queen colonies do not appear when single- and multiple-queen colonies still coexist within the same population, but build up over time in populations consisting mostly of multiple-queen colonies.  相似文献   

15.
Alpine environments are particularly susceptible to environmental changes associated with global warming but there is potential for alpine plants to adapt to warming if local adaptation occurs and gene flow allows genotypes adapted to low altitudes to colonize higher altitude sites. Here we examine the adaptive potential of a common alpine grass, Poa hiemata, within the restricted alpine habitat of Australian mountains, across a narrow altitudinal gradient replicated in three areas. Grasses at high altitude sites had shorter leaf lengths and larger circumferences than those at lower sites. Transplant experiments with clonal material and plants grown from seed indicated that these differences were partly genetic, with environmental and genetic factors both contributing to the differences between altitudes. Differences in altitudinal forms were also evident in a common garden experiment. Plants showed a home-site advantage in terms of survival. A fitness analysis indicated that at high altitude sites, selection favored plants with short leaves and larger circumferences, whereas these traits were selected in the opposite direction at the low altitude sites. These findings indicate cogradient selection and potential for both plastic and genotypic shifts in response to climate change in P. hiemata.  相似文献   

16.
It has been generally thought that sex differences in the immune system are the result of the differing life history strategies of the sexes, although the available data are not entirely consistent with the hypothesis. In this study, we studied the variation in the immune function in the mound-building wood ant Formica exsecta. F. exsecta has two forms of males, distinguished by size: the small males (micraners) and the large males (macraners), which die after the mating period, whereas females live tens of years laying their eggs. We found that in general males have a lower encapsulation response against nylon monofilament (i.e. lower immune function) than queens. Among males, the micraners had a lower encapsulation rate than the macraners. However, in queens, there was no correlation between size and encapsulation rate. The origin nest had an effect on the encapsulation rate of males: males from the large nests had a stronger encapsulation rate than males from small nests. However, in queens, nest size did not have any effect on encapsulation response. The observed variation between sexes and individuals in the encapsulation rate is discussed in the context of reproductive strategies and parasite-mediated sexual selection.  相似文献   

17.
We examined several key parameters of the population ecology of a North American population of Formica fusca (L.), including nest dispersion, colony size and brood production. Physical nest size was significantly correlated with colony size, and colony size, in turn, was significantly correlated with brood production. Sex allocation was male biased, although larger nests were more likely to produce reproductive female brood (gynes). Neither nest temperature nor moisture level was significantly correlated with brood production. Formica fusca nests in this population had a comparatively low average nearest-neighbor distance with a significantly even pattern of dispersion, which suggests relatively high intraspecific competition. However, nearest-neighbor distance was not significantly associated with either colony size or relative brood production.  相似文献   

18.
Moles are fossorial mammals that can act both as zoogeomorphic agents and species diversity drivers. These popular animals regularly push heaps of earth from their subterranean tunnel systems to the surface. Thereby they rearrange and improve the local microtopography for ant nesting. Here we use a strongly molehill (Talpa europaea) mediated nest system of the unicolonial wood ant Formica (Coptoformica) exsecta to test for ecological factors influencing nest-site selection at the microhabitat scale. Our results show that the size of molehills plays an important role in the multifactorial process of the ant’s nest-site choice with solar insolation as a paramount factor. The ants clearly favored larger and better sun-exposed molehills, suggesting that the coaction of a zoogeomorphic modified microrelief and solar insolation can drive the spatial colonization of F. exsecta.  相似文献   

19.
Since recent studies have linked an impaired response to antiplatelet therapy with a higher incidence of atherothrombotic events, the monitoring of the efficacy of antiplatelet therapy in the individual patient has attracted much attention. In the present report, we demonstrate that platelet function testing with several point-of-care assays results in ambiguous and conflicting results: some assays indicated that the patient’s platelets were insufficiently inhibited by clopidogrel whereas other assays reported an adequate response. Therefore, platelet function assays should not be used solely to guide treatment decisions, and tailor-made antithrombotic treatment has to wait for the most predictive platelet function test to emerge for measuring the risk for thrombotic complications after stenting. Until then, daily clinical practice should not be guided by point-of-care platelet function testing. (Neth Heart J 2007;15:299-305).  相似文献   

20.
Various intrinsic factors connected to the special features of sociality influence the persistence of social insect populations, including low effective population size, reduced amount of genetic variation easily leading to inbreeding depression, and spatially structured populations. In this work, we studied an isolated, small and fragmented population system of the red wood ant Formica lugubris, and evaluated the impact of social and genetic population structure on the persistence and conservation of the populations. The effective population size was large in our study population because all nests were polygynous. As a result, and despite the apparent isolation, the amount of nuclear genetic variability was similar to that in a nonisolated population system. Lack of inbreeding, as well as a high level of variability, indirectly suggests that this population does not suffer from inbreeding depression. The spatial distribution of genetic variation between local populations suggests intensive, but strongly male-biased, nuclear gene flow. Thus, the persistence of this population system does not seem to be threatened by any immediate social or genetic factor, but colonization of new habitat patches may be difficult because of restricted female dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号