首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The importance of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore coexpressed. The mir-11∼998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of miR-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in pleiotropic developmental defects. This novel regulation of expression of miRNAs within a cluster is not limited to the mir-11∼998 cluster and, thus, likely reflects the more general cis-regulation of expression of individual miRNAs. Collectively, our results uncover a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift a biological response.  相似文献   

9.
10.
11.
12.
13.
14.

Background

A long juvenile period between germination and flowering is a common characteristic among fruit trees, including Malus hupehensis (Pamp.) Rehd., which is an apple rootstock widely used in China. microRNAs (miRNAs) play an important role in the regulation of phase transition and reproductive growth processes.

Results

M. hupehensis RNA libraries, one adult and one juvenile phase, were constructed using tree leaves and underwent high-throughput sequencing. We identified 42 known miRNA families and 172 novel miRNAs. We also identified 127 targets for 25 known miRNA families and 168 targets for 35 unique novel miRNAs using degradome sequencing. The identified miRNA targets were categorized into 58 biological processes, and the 123 targets of known miRNAs were associated with phase transition processes. The KEGG analysis revealed that these targets were involved in starch and sucrose metabolism, and plant hormone signal transduction. Expression profiling of miRNAs and their targets indicated multiple regulatory functions in the phase transition. The higher expression level of mdm-miR156 and lower expression level of mdm-miR172 in the juvenile phase leaves implied that these two small miRNAs regulated the phase transition. mdm-miR160 and miRNA393, which regulate genes involved in auxin signal transduction, could also be involved in controlling this process. The identification of known and novel miRNAs and their targets provides new information on this regulatory process in M. hupehensis, which will contribute to the understanding of miRNA functions during growth, phase transition and reproduction in woody fruit trees.

Conclusions

The combination of sRNA and degradome sequencing can be used to better illustrate the profiling of hormone-regulated miRNAs and miRNA targets involving complex regulatory networks, which will contribute to the understanding of miRNA functions during growth, phase transition and reproductive growth in perennial woody fruit trees.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1125) contains supplementary material, which is available to authorized users.  相似文献   

15.
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.  相似文献   

16.
17.
18.
19.
Mature microRNAs (miRNAs) are single-stranded RNA molecules of 17-24 nucleotides (nt) in length that are encoded in the genomes of plants and animals. The seminal discoveries of miRNA made in C. elegans have led the way to the rampant discoveries being made today in this field. Since each miRNA is predicted and in some cases confirmed to regulate multiple genes, the potential regulatory circuitry afforded by miRNAs is thought to be enormous and could amount to regulation of >30% of all human genes. Due to the sequences of many of the miRNAs being highly homologous among organisms, the huge potential of miRNAs to regulate gene expression, and the hints of miRNAs being useful in both diagnostics and therapeutics, it is no wonder these small RNAs are gaining such popularity in both the academic and industrial settings. It is now becoming clear that the miRNA gene class represents a very important gene regulatory network. This article reviews the initial discoveries of miRNA that began in the nematode C. elegans, and extends into what is known about miRNAs and miRNA processing factors in mouse development and human disease.  相似文献   

20.
Transmissible gastroenteritis virus (TGEV; Coronaviridae family) causes huge economic losses to the swine industry. MicroRNAs (miRNAs) play a regulatory role in viral infection and may be involved in the mammalian immune response. Here, we report a comprehensive analysis of host miRNA expression in TGEV-infected swine testis (ST) cells. Deep sequencing generated 3,704,353 and 2,763,665 reads from uninfected ST cells and infected ST cells, respectively. The reads were aligned to known Sus scrofa pre-miRNAs in miRBase 19, identifying 284 annotated miRNAs. Certain miRNAs were differentially regulated during TGEV infection. 59 unique miRNAs displayed significant differentially expression between the normal and TGEV-infected ST cell samples: 15 miRNAs were significantly up-regulated and 44 were significantly down-regulated. Stem-loop RT-PCR was carried out to determine the expression levels of specific miRNAs in the two samples, and the results were consistent with those of sequencing. Gene ontology enrichment analysis of host target genes demonstrated that the differentially expressed miRNAs are involved in regulatory networks, including cellular process, metabolic process, immune system process. This is the first report of the identification of ST cell miRNAs and the comprehensive analysis of the miRNA regulatory mechanism during TGEV infection, which revealed the miRNA molecular regulatory mechanisms for the viral infection, expression of viral genes and the expression of immune-related genes. The results presented here will aid research on the prevention and treatment of viral diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号