首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A vanadate- and N-ethylmaleimide-sensitive ATPase was purified about 500-fold from chromaffin granule membranes. The purified preparation contained a single major polypeptide with an apparent molecular mass of about 115 kDa, which was copurified with the ATPase activity. Immunological studies revealed that this polypeptide has no relation to subunit I (115 kDa) of the H+-ATPase from chromaffin granules. The ATPase activity of the enzyme is inhibited about 50% by 100 microM N-ethylmaleimide or 5 microM vanadate. The enzyme is not sensitive to dicyclohexylcarbodiimide, ouabain, SCH28080, and omeprazole, which distinguishes it from Na+/K+-ATPase and the gastric K+/H+-ATPase. ATP and 2-deoxy ATP are equally effective substrates for the enzyme. However, the enzyme exhibited only 10% activity with GTP as a substrate. UV illumination of the purified enzyme in the presence of [alpha-32P]ATP exclusively labeled the 115 kDa protein. This labeling was increased by Mg2+ and strongly inhibited by Ca2+ ions. Similarly, the ATPase activity was dependent on Mg2+ and inhibited by the presence of Ca2+ ions. The ATPase activity of the enzyme was largely insensitive to monovalent anions and cations, except for F-, which inhibited the vanadate-sensitive ATPase. Incubation of the enzyme in the presence of [14C]N-ethylmaleimide labeled the 115-kDa polypeptide, and this labeling could be prevented by the addition of ATP during the incubation. A reciprocal experiment showed that preincubation with N-ethylmaleimide inhibited the labeling of the 115-kDa polypeptide by [alpha-32P]ATP by UV illumination. This suggests a close proximity between the ATP-binding site and an essential sulfhydryl group. A possible connection between the isolated ATPase and organelle movement is discussed.  相似文献   

2.
Mechanisms of detergent effects on membrane-bound (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
Because the nonionic detergent octaethylene glycol dodecyl ether has been used extensively for studies on active solubilized preparations of (Na+ + K+)-ATPase, we tried to see if the detergent alters the properties of the membrane-bound enzyme prior to solubilization. Addition of the detergent, at concentrations below its critical micellar concentration, to reaction mixtures containing the highly purified membrane-bound enzyme reduced the K0.5 of ATP for (Na+ + K+)-dependent ATPase activity without affecting the maximal velocity or abolishing the negative cooperativity of the substrate-velocity curve. Under these conditions, however, the enzyme was not solubilized as evidenced by complete sedimentation of the membrane fragments containing the enzyme upon centrifugation at 100,000 X g for 30 min. Other nonsolubilizing effects of the detergent included an increase in K0.5 of K+, inhibition of Na+-dependent ATPase with no effect on K0.5 of ATP for this activity, and reductions in the spontaneous decomposition rates of the K+-sensitive phosphoenzyme obtained from ATP and the phosphoenzyme obtained from Pi. The nonsolubilizing effects of the detergent on the purified enzyme were obtained with no detectable lag, were readily reversible, and could be distinguished from its vesicle-opening effects on crude membrane preparations. Several other nonionic and ionic detergents had similar effects on the enzyme. The findings indicate (a) detergent binding to hydrophobic sites on extramembranous segments of enzyme subunits; (b) that occupation of these sites mimics the effects of ATP at a low-affinity regulatory site with no effect on high-affinity ATP binding to the catalytic site; and (c) that in studies on detergent-solubilized preparations, it is necessary to distinguish between the effects of solubilization per se and detergent effects at the regulatory site.  相似文献   

3.
W J Ball 《Biochemistry》1986,25(22):7155-7162
The effects of a monoclonal antibody, prepared against the purified lamb kidney Na+,K+-ATPase, on the enzyme's Na+,K+-dependent ATPase activity were analyzed. This antibody, designated M10-P5-C11, is directed against the catalytic subunit of the "native" holoenzyme. It inhibits greater than 90% of the ATPase activity and acts as a noncompetitive or mixed inhibitor with respect to the ATP, Na+, and K+ dependence of enzyme activity. It inhibits the Na+- and Mg2+ATP-dependent phosphoenzyme intermediate formation. In contrast, it has no effect on K+-dependent p-nitrophenylphosphatase (pNPPase) activity, the interconversion of the phosphoenzyme intermediates, and ADP-sensitive or K+-dependent dephosphorylation. It does not alter ATP binding to the enzyme nor the covalent labeling of the enzyme at the presumed ATP site by fluorescein 5'-isothiocyanate (FITC), but it prevents the ATP-induced stimulation in the rate of cardiac glycoside [3H]ouabain binding to the Na+,K+-ATPase. M10-P5-C11 binding appears to inhibit enzyme function by blocking the transfer of the gamma-phosphoryl of ATP to the phosphorylation site after ATP binding to the enzyme has occurred. In the presence of Mg2+ATP, it also prevents the ATP-induced transmembrane conformational change that enhances cardiac glycoside binding. This uncoupling of ATP binding from its stimulation of ouabain binding and enzyme phosphorylation demonstrates the existence of an enzyme-Mg2+ATP transitional intermediate preceding the formation of the Na+-dependent ADP-sensitive phosphoenzyme intermediate. These results are also consistent with a model of the Na+,K+-ATPase active site being composed of two distinct but interacting regions, the ATP binding site and the phosphorylation site.  相似文献   

4.
The effects of two lectins, wheat germ agglutinin and concanavalin A, were studied on a variety of parameters of two highly purified (Na+ + K+)-ATPases (ATP phosphohydrolase, EC 3.6.1.3), from the rectal salt gland of Squalus acanthias and from the electroplax of Electrophorus electricus. Both lectins agglutinated the rectal gland enzyme equally, but wheat germ agglutinin inhibited (Na+ + K+)-ATPase activity much more. The electroplax enzyme was only marginally agglutinated and inhibited by the lectins. Neuraminidase treatment of the rectal gland (Na+ + K+)-ATPase had no effect on germ agglutinin inhibition. The inhibition of the rectal gland (Na+ + K+)-ATPase by wheat germ agglutinin could be reversed by N,N'-diacetylchitobiose, which has a high affinity for wheat germ agglutinin. Neither ouabain inhibition nor ouabain binding to the rectal gland enzyme was affected by wheat germ agglutinin. The p-nitrophenylphosphatase activity of the rectal gland enzyme was not inhibited by wheat germ agglutinin. Na+-ATPase activity, which reflects ATP binding and phosphorylation at the substrate site was inhibited by wheat germ agglutinin and this inhibition was reversed by potassium. Evidence is cited (Pennington, J. and Hokin, L.E., in preparation) that the inhibition of the (Na+ + K+)-ATPase by wheat germ agglutinin is due to binding to the glycoprotein subunit.  相似文献   

5.
Incubation of a highly purified bovine spleen protein tyrosine kinase with [gamma-32P]ATP and Mg2+ resulted in a gradual radioactive labeling of the protein kinase (50 kDa) with no change in the protein kinase activity toward angiotensin II. On the other hand, treatment of the protein tyrosine kinase with an immobilized alkaline phosphatase caused essentially complete loss in the kinase activity, which could be restored by incubation of the enzyme with ATP and Mg2+. By using the alkaline phosphatase-treated kinase, time courses of the protein phosphorylation and the enzyme activation were demonstrated to correlate closely. These results indicate that this protein tyrosine kinase relies on autophosphorylation for activity and that the purified enzyme usually exists in a fully phosphorylated state. The radioactive labeling of the purified kinase during incubation with [gamma-32P]ATP resulted from a phosphate exchange reaction: the exchange of [gamma-32P]phosphate of ATP with the protein bound phosphate as previously suggested (Kong, S.K., and Wang, J.H. (1987) J. Biol. Chem. 262, 2597-2603). It could be shown that the autophosphorylation of phosphatase-treated tyrosine kinase was strongly inhibited by the substrate angiotensin II, whereas the exchange reaction carried out with untreated tyrosine kinase was not. Autophosphorylation is suggested to be an intermolecular reaction since its initial rate is proportional to the square of the protein concentration.  相似文献   

6.
The acetate activating system of Acetobacter aceti has been studied. The enzyme responsible, acetyl-CoA synthetase, has been purified about 500-fold from crude cell extracts and was approximately 85% pure as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. The purified enzyme showed optimal activity at pH 7.6 in both Tris-HCL and potassium phosphate buffers. In its purest form, the enzyme was stable at 4 degrees-C but denatured upon freezing. The Km values for CoA, ATP and acetate were found to be 0.104 mM, 0.36 mM and 0.25 mM respectively; propionate and acrylate were also activated by the enzyme but not butyrate, isobutyrate or valerate. GTP, UTP, CTP and ADP could not replace ATP in the reaction, and cysteine or pantetheine failed to replace CoA. The cationic requirements were studied and of the divalent cations tested, only Mn2+ could significantly replace Mg2+ in the reaction; K+ and NH4+ stimulated enzyme activity but inhibited at high concentrations; Na+ was a poor activator, but did not inhibit at higher concentrations. The effect of a number of glucose and other metabolites on enzyme activity has been tested.  相似文献   

7.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

8.
K+ appears to decrease the affinity of the (Na+ + K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) for its substrate, Mg2+ - ATP, and Mg2+ - ATP, in turn, appears to decrease the affinity of the enzyme for K+. These antagonisms have been investigated in terms of a quantitative model defining the magnitude of the effects as well as identifying the class of K+ sites on the enzyme involved. K+ increased the apparent Km for Mg2+ - ATP, an effect that was antagonized competitively by Na+. The data can be fitted to a model in which Mg2+ - ATP binding is prevented by occupancy of alpha-sites on the enzyme by K+ (i.e. sites of moderate affinity for K+ accessible on the "free" non-phosphorylated enzyme, in situ on the external membrane surface). By contrast, occupancy of these alpha-sites by Na+ has no effect on Mg2+ - ATP binding to the enzyme. On the other hand, Mg2+ - ATP decreased the apparent affinity of the enzyme for K+ at the alpha-sites, in terms of (i) the KD for K+ measured by K+-accelerated inactivation of the enzyme by F-, and (ii) the concentration of K+ for half-maximal activation of the K+-dependent phosphatase reaction (which reflects the terminal hydrolytic steps of the overall ATPase reaction). These data fit the same quantitative model. Although this formulation does not support schemes in which ATP binding effects the release of transported K+ from discharge sites, it is consistent with observations that K+ can inhibit the enzyme at low substrate concentrations, and that Li+, which has poor efficacy when occupying these alpha-sites, can stimulate enzymatic activity at high K+ concentrations by displacing the inhibitory K+.  相似文献   

9.
1. Preincubation with N-ethylmaleimide inhibits the overall activity of highly purified (Na+ +K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) preparations of rabbit kidney outer medulla. 2. This inhibition is decreased by addition of ATP or 4-nitrophenylphosphate under non-phosphorylating conditions, and also by addition of ADP or adenylylimidodiphosphate. 3. N-ethylmaleimide treatment leads to inhibition of K+-stimulated 4-nitrophenylphosphatase activity, Na+-stimulated ATPase activity, and phosphorylation by ATP as well as by inorganic phosphate. These inhibitions strictly parallel that of the overal (Na+ +K+)-ATPase reaction. 4. N-ethylmaleimide lowers the number of sites which are phosphorylated by inorganic phosphate, without affecting the dissociation constant of the enzyme-phosphate complex. 5. N-ethylmaleimide does not affect the relative stimulation by ATP of the K+-stimulated 4-nitrophenylphosphatase activity. 6. These effects of N-ethylmaleimide can be explained as a complete loss of active enzyme, either by reaction of N-ethylmaleimide inside the active center, or by alterations in the quaternary structure through reactions outside the active center.  相似文献   

10.
Purification of a putative K+-ATPase from Streptococcus faecalis   总被引:9,自引:0,他引:9  
We have purified a novel membrane ATPase from Streptococcus faecalis by the following procedure: extraction of membranes with Triton X-100 followed by fractionation of the extract by successive DEAE-cellulose chromatography, hydroxylapatite chromatography and Cm-Sepharose chromatography. The overall yield was 5%. The purified ATPase appears to consist of a single polypeptide component of Mr = 78,000. The Triton-solubilized purified enzyme has a specific activity of approximately 50 mumol of ATP hydrolyzed per min per mg, is dependent on phospholipids for activity, and is strongly inhibited by vanadate (I50 = 3 microM). Maximal ATPase activity is displayed at pH 7.3. Mg2+-ATP, for which the enzyme has a Km of 60 microM, is the best substrate. The ATPase forms an acylphosphate intermediate that can also be detected in native membranes as the major acylphosphate component. The purified ATPase, when reconstituted into soybean phospholipid vesicles, exhibits coupling, e.g. the ATPase activity can be stimulated at least 8-fold by valinomycin in the presence of potassium. Based on these observations we conclude that the enzyme we have purified is an ion-motive ATPase, most likely a K+-ATPase.  相似文献   

11.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

12.
Demenis MA  Leone FA 《IUBMB life》2000,49(2):113-119
Polidocanol-solubilized alkaline phosphatase was purified to homogeneity with a specific activity of 822.3 U/mg. In the absence of Mg2+ and Ca2+ ions and at pH 9.4, the enzyme hydrolyzed ATP in a manner that could be represented by biphasic curves with V = 94.3 U/mg, K0.5 = 17.2 microM, and n = 1.8 and V = 430.3 U/mg, K0.5 = 3.2 mM, and n = 3.2 for high- and low-affinity sites, respectively. In the presence of saturating concentrations of Mg2+ or Ca2+ ions, the hydrolysis of ATP also followed biphasic curves. However, the specific activity increased to as much as 1,000 U/mg, whereas the K0.5 and n values remained almost unchanged. In the presence of nonsaturating concentrations of metal ions, the hydrolysis of ATP was similar to that observed in the absence of these ions, but with a marked decrease in K0.5 values. At pH 7.5, the enzyme also hydrolyzed ATP with K0.5 = 8.1 microM and V = 719.8 U/mg. Apparently, alkaline phosphatase was able to hydrolyze ATP in vivo, either at pH 7.5 or pH 9.4. These data contribute to the knowledge of the biological properties of skeletal alkaline phosphatase and suggest that this enzyme may have a high-affinity binding site for ATP at alkaline pH.  相似文献   

13.
Radiation inactivation of partially purified (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from pig kidney outer medulla shows that the target size for Rb+ occlusion by the enzyme (in the absence of phosphorylation) is much smaller than the target size for p-nitrophenyl phosphatase activity, which is itself smaller than the reported target size for (Na+ + K+)-ATPase activity.  相似文献   

14.
Purified (Na+ + K+)-ATPase from pig kidney was attached to black lipid membranes and ATP-induced electric currents were measured as described previously by Fendler et al. ((1985) EMBO J. 4, 3079-3085). An ATP concentration jump was produced by an ultraviolet-light flash converting non-hydrolysable caged ATP to ATP. In the presence of Na+ and Mg2+ this resulted in a transient current signal. The pump current was not only ATP dependent, but also was influenced by the ATP/caged ATP ratio. It was concluded that caged ATP binds to the enzyme (and hence inhibits the signal) with a Ki of approx. 30 microM, which was confirmed by enzymatic activity studies. An ATP affinity of approx. 2 microM was determined. The addition of the protonophore 1799 and the Me+/H+ exchanger monensin made the bilayer conductive leading to a stationary pump current. The stationary current was strongly increased by the addition of K+ with a K0.5 of 700 microM. Even in the absence of K+ a stationary current could be measured, which showed two Na+-affinities: a high-affinity (K0.5 less than or equal to 1 mM) and a low-affinity (K0.5 greater than or equal to 0.2 M). In order to explain the sustained electrogenic Na+ transport during the Na+-ATPase activity, it is proposed, that Na+ can replace K+ in dephosphorylating the enzyme, but binds about 1000-times weaker than K+. The ATP requirement of the Na+-ATPase was the same (K0.5 = 2 microM) with regard to the peak currents and the stationary currents. However, for the (Na+ + K+)-ATPase the stationary currents required more ATP. The results are discussed on the basis of the Albers-Post scheme.  相似文献   

15.
Hung HC  Chien YC  Hsieh JY  Chang GG  Liu GY 《Biochemistry》2005,44(38):12737-12745
Human mitochondrial NAD(P)+-dependent malic enzyme is inhibited by ATP. The X-ray crystal structures have revealed that two ATP molecules occupy both the active and exo site of the enzyme, suggesting that ATP might act as an allosteric inhibitor of the enzyme. However, mutagenesis studies and kinetic evidences indicated that the catalytic activity of the enzyme is inhibited by ATP through a competitive inhibition mechanism in the active site and not in the exo site. Three amino acid residues, Arg165, Asn259, and Glu314, which are hydrogen-bonded with NAD+ or ATP, are chosen to characterize their possible roles on the inhibitory effect of ATP for the enzyme. Our kinetic data clearly demonstrate that Arg165 is essential for catalysis. The R165A enzyme had very low enzyme activity, and it was only slightly inhibited by ATP and not activated by fumarate. The values of K(m,NAD) and K(i,ATP) to both NAD+ and malate were elevated. Elimination of the guanidino side chain of R165 made the enzyme defective on the binding of NAD+ and ATP, and it caused the charge imbalance in the active site. These effects possibly caused the enzyme to malfunction on its catalytic power. The N259A enzyme was less inhibited by ATP but could be fully activated by fumarate at a similar extent compared with the wild-type enzyme. For the N259A enzyme, the value of K(i,ATP) to NAD+ but not to malate was elevated, indicating that the hydrogen bonding between ATP and the amide side chain of this residue is important for the binding stability of ATP. Removal of this side chain did not cause any harmful effect on the fumarate-induced activation of the enzyme. The E314A enzyme, however, was severely inhibited by ATP and only slightly activated by fumarate. The values of K(m,malate), K(m,NAD), and K(i,ATP) to both NAD+ and malate for E314A were reduced to about 2-7-folds compared with those of the wild-type enzyme. It can be concluded that mutation of Glu314 to Ala eliminated the repulsive effects between Glu314 and malate, NAD+, or ATP, and thus the binding affinities of malate, NAD+, and ATP in the active site of the enzyme were enhanced.  相似文献   

16.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

17.
A potent inhibitor of (Na+ + K+)-ATPase activity was purified from Sigma equine muscle ATP by cation- and anion-exchange chromatography. The isolated inhibitor was identified by atomic absorption spectroscopy and proton resonance spectroscopy to be an inorganic vanadate. The isolated vanadate and a solution of V2O5 inhibit sarcolemma (Na+ + K+)-ATPase with an I50 of 1 micrometer in the presence of 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA), 145 mM NaCl, 6mM MgCl2, 15 mM KCl and 2 mM synthetic ATP. The potency of the isolated vanadate is increased by free Mg2+. The inhibition is half maximally reversed by 250 micrometer epinephrine. Equine muscle ATP was also found to contain a second (Na+ + K+)-ATPase inhibitor which depends on the sulfhydryl-reducing agent dithioerythritol for inhibition. This unknown inhibitor does not depend on free Mg2+ and is half maximally reversed by 2 micrometer epinephrine. Prolonged storage or freeze-thawing of enzyme preparations decreases the susceptibility of the (Na+ + K+)-ATPase to this inhibitor. The adrenergic blocking agents, propranolol and phentolamine, do not block the catecholamine reactivation. The inhibitors in equine muscle ATP also inhibit highly purified (Na+ + K+)-ATPase from shark rectal gland and eel electroplax. The inhibitors in equine muscle ATP have no effect on the other sarcolemmal ATPases, Mg2+-ATPase, Ca2+-ATPase and (Ca2+ + Mg2+)-ATPase.  相似文献   

18.
Experiments from other laboratories conducted with Leishmania donovani promastigote cells had earlier indicated that the plasma membrane Mg2+-ATPase of the parasite is an extrusion pump for H+. Taking advantage of the pellicular microtubular structure of the plasma membrane of the organism, we report procedures for obtaining sealed ghost and sealed everted vesicle of defined polarity. Rapid influx of H+ into everted vesicles was found to be dependent on the simultaneous presence of ATP (1 mm) and Mg2+ (1 mm). Excellent correspondence between rate of H+ entry and the enzyme activity clearly demonstrated the Mg2+-ATPase to be a true H+ pump. H+ entry into everted vesicle was strongly inhibited by SCH28080 (IC50 = approximately 40 microm) and by omeprazole (IC50 = approximately 50 microm), both of which are characteristic inhibitors of mammalian gastric H+,K+-ATPase. H+ influx was completely insensitive to ouabain (250 microm), the typical inhibitor of Na+,K+-ATPase. Mg2+-ATPase activity could be partially stimulated with K+ (20 mm) that was inhibitable (>85%) with SCH28080 (50 microm). ATP-dependent rapid efflux of 86Rb+ from preloaded vesicles was completely inhibited by preincubation with omeprazole (150 microm) and by 5,5'-dithiobis-(2-nitrobenzoic acid) (1 mm), an inhibitor of the enzyme. Assuming Rb+ to be a true surrogate for K+, an ATP-dependent, electroneutral stoichiometric exchange of H+ and K+(1:1) was established. Rapid and 10-fold active accumulation of [U-(14)C]2-deoxyglucose in sealed ghosts could be observed when an artificial pH gradient (interior alkaline) was imposed. Rapid efflux of [U-(14)C]d-glucose from preloaded everted vesicles could also be initiated by activating the enzyme, with ATP. Taken together, the plasma membrane Mg2+-ATPase has been identified as an electroneutral H+/K+ antiporter with some properties reminiscent of the gastric H+,K+-ATPase. This enzyme is possibly involved in active accumulation of glucose via a H+-glucose symport system and in K+ accumulation.  相似文献   

19.
During ATP hydrolysis the K+-translocating Kdp-ATPase from Escherichia coli forms a phosphorylated intermediate as part of the catalytic cycle. The influence of effectors (K+, Na+, Mg2+, ATP, ADP) and inhibitors (vanadate, N-ethylmaleimide, bafilomycin A1) on the phosphointermediate level and on the ATPase activity was analyzed in purified wild-type enzyme (apparent Km = 10 microM) and a KdpA mutant ATPase exhibiting a lower affinity for K+ (Km = 6 mM). Based on these data we propose a minimum reaction scheme consisting of (i) a Mg2+-dependent protein kinase, (ii) a Mg2+-dependent and K+-stimulated phosphoprotein phosphatase, and (iii) a K+-independent basal phosphoprotein phosphatase. The findings of a K+-uncoupled basal activity, inhibition by high K+ concentrations, lower ATP saturation values for the phosphorylation than for the overall ATPase reaction, and presumed reversibility of the phosphoprotein formation by excess ADP indicated similarities in fundamental principles of the reaction cycle between the Kdp-ATPase and eukaryotic E1E2-ATPases. The phosphoprotein was tentatively characterized as an acylphosphate on the basis of its alkali-lability and its sensitivity to hydroxylamine. The KdpB polypeptide was identified as the phosphorylated subunit after electrophoretic separation at pH 2.4, 4 degrees C of cytoplasmic membranes or of purified ATPase labeled with [gamma-32P]ATP.  相似文献   

20.
The hydrogenosomal enzyme ATP:AMP phosphotransferase (adenylate kinase) (EC 2.7.4.3) was purified to apparent homogeneity from the bovine parasite Tritrichomonas foetus. A fraction enriched for hydrogenosomes was obtained from cell homogenates which had been subjected to differential and isopycnic centrifugation. Adenylate kinase was solubilized in 50 mM Tris-HCl, pH 7.3, containing 0.8% Triton X-100, and purified by sequential Affi-Gel blue affinity chromatography and high-performance liquid chromatography gel filtration. The purified enzyme, a monomer of Mr 29,000, exhibited Km values of 100, 195, and 83 microM for ADP, ATP, and AMP, respectively. Substituting other mono-, di-, and trinucleotides for AMP, ADP, and ATP gave less than half the maximal activity. Full enzyme activity requires Mg2+, but Mn2+ and Co2+ yield half maximal activity. The enzyme has a broad optimal pH range between pH 6 and 9. The enzyme was competitively inhibited by P1,P5-di(adenosine-5')pentaphosphate, a specific adenylate kinase inhibitor: the Ki was 150 nM. The enzyme was also inhibited with 5,5'-dithiobis(2-nitrobenzoic acid), and this inhibition could be reversed by the addition of 2 mM dithiothreitol. T. foetus adenylate kinase has similar catalytic and physical properties to that of the biologically closely related human parasite Trichomonas vaginalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号