首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mother-to-infant transmission of SIV via breast-feeding in rhesus macaques   总被引:1,自引:0,他引:1  
To decipher the mechanisms involved in oral transmission of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) through breast-feeding, we have developed an animal model using SIV-infected lactating rhesus macaques (Macaca mulatta) and their infants. Five of eight macaque infants became infected during a 10-month study course after SIV inoculation of lactating dams. In a second study, three of four chronically infected female macaques transmitted virus to their infants through breast-feeding within 4 months of birth. Transmission of virus to infants did not correlate with viral loads in either milk or plasma. Infants were infected with homogeneous virus populations, while milk samples near the time of transmission were more diverse. These studies suggest that specific viral phenotypes are selectively transmitted through breast-feeding.  相似文献   

2.
To understand viral and host factors that contribute to transplacental transmission of human immunodeficiency virus, we developed an animal model using pregnant female macaques infected with simian immunodeficiency virus (SIV). Pregnant females were inoculated intravenously during midgestation with either a well-characterized primary isolate of SIV (SIV/DeltaB670) or a combination of SIV/DeltaB670 and the macrophage-tropic molecular clone SIV/17E-Fr. The viral genetic diversity in five infected female macaques and their in utero-infected infants was analyzed. All of the mothers harbored a genetically diverse virus population at parturition, whereas a single genotype from the maternal quasispecies was identified in the infants at birth. Only one of two variants was found in the infants: SIV/17E-Fr (two cases) or a genotype contained within the SIV/DeltaB670 quasispecies (three cases). The macrophage-tropic properties of both transmitted genotypes were suggested by productive replication in primary rhesus macrophage cultures in vitro and the clonal presence in central nervous system tissue of infected monkeys with encephalitis. These observations provide compelling evidence for both genotypic and phenotypic selection in transplacental transmission of SIV and suggest a critical role for macrophages in fetal infection in utero.  相似文献   

3.
Abstract: The SIV-infected macaque provides an excellent model to study factors involved in maternal-fetal transmission of HIV. In our prenatal transmission studies, female macaques were inoculated intravenously during midgestation with either SIV/DeltaB670 or a combination of SIV/DeltaB670 and the macrophage-tropic molecular clone SIV/17E-Fr. The females harbored a genetically diverse virus population at parturition, whereas a single genotype from the maternal quasispecies was identified in the infants. One of two variants was transplacentally transmitted to the infants, SIV/17E-Fr or B670-Cl 12, a genotype contained within the SIV/DeltaB670 inoculum. Both of these variants have been identified in the central nervous system of macaques that have developed encephalitis and they replicate in vitro on primary rhesus macrophages. These results suggest a critical role for macrophages in fetal infection in utero. In our perinatal transmission studies we have evaluated the viral genotypes found in two newborn macaques infected orally with SIV/DeltaB670 and in one infant infected via amniotic inoculation in late gestation. More than one viral genotype was identified in each infant, moreover, each infant harbored different genotypes. These results suggest different mechanisms are responsible for viral infection via these routes.  相似文献   

4.
The design of immunologic interventions to prevent postnatal transmission of human immunodeficiency virus (HIV) will require identification of protective immune responses in this setting. Simian immunodeficiency virus (SIV)-infected rhesus monkeys (RMs), a species that develops an AIDS-like illness following experimental infection, transmit the virus at a high rate during breastfeeding. In contrast, postnatal transmission of SIV occurs rarely or not at all in natural, asymptomatic primate hosts of SIV. These contrasting transmission patterns provide a unique opportunity to study mechanisms that evolved to protect suckling infants from SIV infection. We compared the virologic and immunologic properties of milk of SIV-infected and uninfected natural hosts of SIV, African green monkeys (AGMs), to that of RMs. Interestingly, despite a low number of milk CD4(+) T lymphocytes in uninfected AGMs, milk virus RNA load in SIV-infected AGMs was comparable to that of SIV-infected RMs and that in AGM plasma. This observation is in contrast to the relatively low virus load in milk compared to that in plasma of SIV-infected RMs and HIV-infected women. Milk of SIV-infected AGMs also displayed robust virus-specific cellular immune responses. Importantly, an autologous challenge virus-specific neutralization response was detected in milk of five of six SIV-infected AGMs that was comparable in magnitude to that in plasma. In contrast, autologous challenge virus neutralization was not detectable in milk of SIV-infected RMs. The autologous virus-specific adaptive immune responses in breast milk of AGMs may contribute to impedance of virus transmission in the infant oral/gastrointestinal tract and the rarity of postnatal virus transmission in natural hosts of SIV.  相似文献   

5.
A better understanding of the host and viral factors associated with human immunodeficiency virus (HIV) transmission is essential to developing effective strategies to curb the global HIV epidemic. Here we used the rhesus macaque-simian immunodeficiency virus (SIV) animal model of HIV infection to study the range of viral genotypes that are transmitted by different routes of inoculation and by different types of viral inocula. Analysis of transmitted variants was undertaken in outbred rhesus macaques inoculated intravenously (IV) or intravaginally (IVAG) with a genetically heterogeneous SIVmac251 stock derived from a well-characterized rhesus macaque viral isolate. In addition, we performed serial IV and IVAG passage experiments using plasma from SIV-infected macaques as the inoculum. We analyzed the V1-V2 region of the SIV envelope gene from virion-associated RNA in plasma from infected animals by the heteroduplex mobility assay (HMA) and by DNA sequence analysis. We found that a more diverse population of SIV genetic variants was present in the earliest virus-positive plasma samples from all five IV SIVmac251-inoculated monkeys and from two of five IVAG SIVmac251-inoculated monkeys. In contrast, we found a relatively homogeneous population of SIV envelope variants in three of five monkeys inoculated IVAG with SIVmac251 stock and in two monkeys infected after IVAG inoculation with plasma from an SIV-infected animal. In some IVAG-inoculated animals, the transmitted SIV variant was the most common variant in the inoculum. However, a specific viral variant in the SIVmac251 stock was not consistently transmitted by IVAG inoculation. Thus, it is likely that host factors or stochastic processes determine the specific viral variants that infect an animal after IVAG SIV exposure. In addition, our results clearly demonstrate that the route of inoculation is associated with the extent and breadth of the genetic complexity of the viral variant population in the earliest stages of systemic infection.  相似文献   

6.
Breast milk transmission of human immunodeficiency virus (HIV) remains an important mode of infant HIV acquisition. Interestingly, the majority of infants remain uninfected during prolonged virus exposure via breastfeeding, raising the possibility that immune components in milk prevent mucosal virus transmission. HIV-specific antibody responses are detectable in the milk of HIV-infected women and simian immunodeficiency virus (SIV)-infected monkeys; however, the role of these humoral responses in virus neutralization and local virus quasispecies evolution has not been characterized. In this study, four lactating rhesus monkeys were inoculated with SIVmac251 and monitored for SIV envelope-specific humoral responses and virus evolution in milk and plasma throughout infection. While the kinetics and breadth of the SIV-specific IgG and IgA responses in milk were similar to those in plasma, the magnitude of the milk responses was considerably lower than that of the plasma responses. Furthermore, a neutralizing antibody response against the inoculation virus was not detected in milk samples at 1 year after infection, despite a measurable autologous neutralizing antibody response in plasma samples obtained from three of four monkeys. Interestingly, while IgA is the predominant immunoglobulin in milk, the milk SIV envelope-specific IgA response was lower in magnitude and demonstrated more limited neutralizing capacity against a T-cell line-adapted SIV compared to those of the milk IgG response. Finally, amino acid mutations in the envelope gene product of SIV variants in milk and plasma samples occurred in similar numbers and at similar positions, indicating that the humoral immune pressure in milk does not drive distinct virus evolution in the breast milk compartment.Breastfeeding is an important component of the maternal-infant immune system, providing the infant with passive maternal immunity and protection against infectious pathogens. In fact, non-breast-fed infants in developing nations experience higher mortality due to respiratory and diarrheal illnesses (45). However, breastfeeding is also a mode of infant human immunodeficiency virus (HIV) acquisition, contributing to a large proportion of infant HIV infections in areas of high HIV prevalence. Therefore, development of feeding strategies that promote HIV-free survival of infants born to HIV-infected mothers in developing nations poses a major public health challenge.Interestingly, in the absence of antiretroviral prophylaxis, HIV is transmitted via breast milk to only 10% of infants chronically exposed to the virus via breastfeeding (19, 25). This low rate of HIV transmission suggests that antiviral immune factors in milk may protect the majority of infants from mucosal HIV acquisition. HIV envelope-specific antibody responses have been identified in milk, but the magnitude of these responses is similar in women who transmit the virus via breast milk and women whose infants remain uninfected throughout breastfeeding (3, 11, 23). Likewise, the magnitude of simian immunodeficiency virus (SIV) envelope-specific antibody responses in the milk of SIV-infected, lactating rhesus monkeys did not differ in those mothers that did and did not transmit the virus to their suckling infant (1, 42). Proposed mechanisms for HIV-specific breast milk antibody function include virus neutralization and impairment of virus transcytosis through an epithelial cell layer (3, 7, 17). Therefore, the function, rather than the magnitude, of the HIV-specific breast milk antibody response may be the critical feature in protection against infant mucosal transmission. Importantly, passive transfer of broadly neutralizing HIV-specific antibody to neonatal monkeys protected the infants against oral simian-human immunodeficiency virus (SHIV) challenge, indicating that passively transferred humoral immunity can protect infants from virus transmission through breastfeeding (18, 41).Vertically transmitted HIV variants, including those transmitted via breast milk, have been reported to be resistant to neutralization by systemic maternal antibody responses (9, 38). However, HIV-specific neutralizing antibody responses in breast milk have not been characterized. In fact, the ability of mucosal IgA to neutralize HIV remains an important question in the HIV field. While an HIV-specific mucosal IgA response in the genital tracts of exposed-uninfected individuals has been described, the role of mucosal IgA in protection against mucosal transmission of HIV is unclear and controversial (5, 8-10). Furthermore, the contribution of locally replicating virus at mucosal surfaces to the divergence of the systemic and mucosal antibody responses is unknown. Similarly, the role of mucosal antibody in the shaping of mucosal virus quasispecies evolution is not well characterized. Delineation of the function and role of mucosal antibody responses in defining the pool of transmitted virus will be crucial for the design of immunologic interventions to reduce breast milk transmission of HIV.SIV infection of lactating rhesus monkeys provides an excellent model to characterize virus-specific immune responses and virus evolution in milk, as the sequence of the virus inoculum, the timing of the infection, and the virus-specific immunodominant responses are well defined in this model. Furthermore, SIV-infected, lactating rhesus monkeys transmit the virus to their suckling infants via breastfeeding (1). We have developed a pharmacologic protocol to induce lactation in nonpregnant rhesus monkeys, facilitating these studies without reliance on breeder monkeys. Moreover, the milk produced by hormone-induced, lactating monkeys has immunoglobulin content and a lymphocyte phenotype similar to that produced by naturally lactating monkeys (35). In this study, we characterized the neutralizing potency of the SIV envelope-specific IgG and IgA responses in milk and their role in shaping the SIV envelope gene evolution of local virus variants.  相似文献   

7.
The design of an effective vaccine to reduce the incidence of mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) via breastfeeding will require identification of protective immune responses that block postnatal virus acquisition. Natural hosts of simian immunodeficiency virus (SIV) sustain nonpathogenic infection and rarely transmit the virus to their infants despite high milk virus RNA loads. This is in contrast to HIV-infected women and SIV-infected rhesus macaques (RhMs), nonnatural hosts which exhibit higher rates of postnatal virus transmission. In this study, we compared the systemic and mucosal B cell responses of lactating, SIV-infected African green monkeys (AGMs), a natural host species, to that of SIV-infected RhMs and HIV-infected women. AGMs did not demonstrate hypergammaglobulinemia or accumulate circulating memory B cells during chronic SIV infection. Moreover, the milk of SIV-infected AGMs contained higher proportions of naive B cells than RhMs. Interestingly, AGMs exhibited robust milk and plasma Env binding antibody responses that were one to two logs higher than those in RhMs and humans and demonstrated autologous neutralizing responses in milk at 1 year postinfection. Furthermore, the plasma and milk Env gp120-binding antibody responses were equivalent to or predominant over Env gp140-binding antibody responses in AGMs, in contrast to that in RhMs and humans. The strong gp120-specific, functional antibody responses in the milk of SIV-infected AGMs may contribute to the rarity of postnatal transmission observed in natural SIV hosts.  相似文献   

8.
9.
In macaques infected with a clone of simian immunodeficiency virus (SIV) Mne, viral variants consistently evolve multiple new potential glycosylation sites in the first variable region (V1) prior to the development of AIDS. In the present study, we asked whether viruses with these glycosylation sites persist when they are transmitted to a naive macaque. Variants that evolved after transmission to a recipient macaque were compared with virus that evolved in the donor, which had been infected by cloned SIV Mne. Upon transmission, the specific serine/threonine-rich motifs potentially encoding novel O-linked glycosylation site(s) in V1 were conserved in virus isolated from lymph node, spleen, and liver tissue from the recipient. There was some accumulation of changes in V3 of envelope in virus from the recipient, whereas changes in this region were not observed in virus from the donor macaque. Some variants detected in the tissue of the recipient at necropsy were most closely related to viruses present in the donor inoculum even though these particular variants were not detected early after infection in the recipient's peripheral blood mononuclear cells. Overall, virus with the predominant V1 sequences associated with progression to disease are transmitted to and persist in the recipient animal.  相似文献   

10.
Breast milk transmission of HIV is a leading cause of infant HIV/AIDS in the developing world. Remarkably, only a small minority of breastfeeding infants born to HIV-infected mothers contract HIV via breast milk exposure, raising the possibility that immune factors in the breast milk confer protection to the infants who remain uninfected. To model HIV-specific immunity in breast milk, lactation was pharmacologically induced in Mamu-A*01(+) female rhesus monkeys. The composition of lymphocyte subsets in hormone-induced lactation breast milk was found to be similar to that in natural lactation breast milk. Hormone-induced lactating monkeys were inoculated i.v. with SIVmac251 and CD8(+) T lymphocytes specific for two immunodominant SIV epitopes, Gag p11C and Tat TL8, and SIV viral load were monitored in peripheral blood and breast milk during acute infection. The breast milk viral load was 1-2 logs lower than plasma viral load through peak and set point of viremia. Surprisingly, whereas the kinetics of the SIV-specific cellular immunity in breast milk mirrored that of the blood, the peak magnitude of the SIV-specific CD8(+) T lymphocyte response in breast milk was more than twice as high as the cellular immune response in the blood. Furthermore, the appearance of the SIV-specific CD8(+) T lymphocyte response in breast milk was associated with a reduction in breast milk viral load, and this response remained higher than that in the blood after viral set point. This robust viral-specific cellular immune response in breast milk may contribute to control of breast milk virus replication.  相似文献   

11.

Background

Oral infection of infant macaques with simian immunodeficiency virus (SIV) is a useful animal model to test interventions to reduce postnatal HIV transmission via breast-feeding. We previously demonstrated that immunization of infant rhesus macaques with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol and Env, or live-attenuated SIVmac1A11 resulted in lower viremia and longer survival compared to unimmunized controls after oral challenge with virulent SIVmac251 (Van Rompay et al., J. Virology 77:179–190, 2003). Here we evaluate the impact of these vaccines on oral transmission and evolution of SIV envelope variants.

Results

Limiting dilution analysis of SIV RNA followed by heteroduplex mobility assays of the V1–V2 envelope (env) region revealed two major env variants in the uncloned SIVmac251 inoculum. Plasma sampled from all infants 1 week after challenge contained heterogeneous SIV env populations including one or both of the most common env variants in the virus inoculum; no consistent differences in patterns of env variants were found between vaccinated and unvaccinated infants. However, SIV env variant populations diverged in most vaccinated monkeys 3 to 5 months after challenge, in association with the development of neutralizing antibodies.

Conclusions

These patterns of viral envelope diversity, immune responses and disease course in SIV-infected infant macaques are similar to observations in HIV-infected children, and underscore the relevance of this pediatric animal model. The results also support the concept that neonatal immunization with HIV vaccines might modulate disease progression in infants infected with HIV by breast-feeding.  相似文献   

12.
Animal models for sexual transmission of human immunodeficiency virus can define the influences of virus type, dose, and route of inoculation on infection and clinical outcome. We used an uncloned simian immunodeficiency virus stock (SIVmac) to inoculate cells in vitro and to inoculate rhesus monkeys by intravenous and intrarectal routes. The distribution of virus genotypes present in each of these infection examples was characterized by DNA sequence analysis of viral long terminal repeats (LTRs). Our analysis of LTR sequences from in vitro and in vivo infections revealed three main genotypes: one genotype was observed only for in vitro infection, and two other genotypes were recovered only from infected animals. By comparing animals inoculated with high intrarectal doses of SIVmac and those inoculated with low doses, we demonstrated that unique subsets of the stock were selected after intrarectal infection. Our findings indicate that minor genotypes present in the stock cross the rectal mucosa and are amplified selectively to become prominent in peripheral blood mononuclear cells from acutely infected animals. Studies with a molecular recombinant of SIV and human immunodeficiency virus type 1 sequences, SHIV, showed that viral LTR sequences do not undergo especially rapid sequence variation or rearrangement after intrarectal inoculation. The mucosal barrier exerts a significant influence on infection and disease progression by reducing the efficiency of SIVmac infection and by permitting distinct, pathogenic genotypes to become established in the host.  相似文献   

13.
The rate of disease development in simian immunodeficiency virus (SIV) infection of macaques varies considerably among individual macaques. While the majority of macaques inoculated with pathogenic SIV develop AIDS within a period of 1 to 2 years, a minority exhibit a rapid disease course characterized by absence or transience of humoral and cellular immune responses and high levels of virus replication with widespread dissemination of SIV in macrophages and multinucleated giant cells. The goal of this study was to examine viral evolution in three SIVsmE543-3-inoculated rapid progressors to determine the contribution of viral evolution to the development of rapid disease and the effect of the absence of immune pressure upon viral evolution. PCR was used to amplify and clone the entire SIV genome from tissues collected at necropsy, and the course of viral evolution was assessed by env sequences cloned from sequential plasma samples of one rapid progressor (RP) macaque. The majority of sequence changes in RP macaques occurred in the envelope gene. Substitutions were observed in all three animals at specific conserved residues in envelope, including loss of a glycosylation site in V1/V2, a D-to-N/V substitution in a highly conserved GDPE motif, and a P-to-V/H/T substitution in the V3 loop analog. A cell-cell fusion assay revealed that representative env clones utilized CCR5 as a coreceptor, independent of CD4. The selection of specific substitutions in envelope in RP macaques suggests novel selection pressures on virus in such animals and suggests that viral variants that evolve in these animals may play a role in disease progression.  相似文献   

14.
Steady-state levels of human immunodeficiency virus type 1 (HIV-1) RNA in plasma reached at approximately 4 months postinfection are highly predictive of disease progression. Several studies have investigated viral levels in adults or infants during primary and early infection. However, no studies have directly compared these groups. We compared differences in peak and set point plasma HIV-1 RNA viral loads among antiretrovirus-naive Kenyan infants and adults for whom the timing of infection was well defined. Peak and set point viral loads were significantly higher in infants than in adults. We did not observe any gender-specific differences in viral set point in either adults or infants. However, infants who acquired HIV-1 in the first 2 months of life, either in utero, intrapartum, or through early breast milk transmission, had significantly higher set point HIV-1 RNA levels than infants who were infected after 2 months of age through late breast milk transmission or adults who were infected through heterosexual transmission.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) sequences from variable region 3 (V3) of the envelope gene were analyzed from seven infected mother-infant pairs following perinatal transmission. The V3 region sequences directly derived from the DNA of the uncultured peripheral blood mononuclear cells from infected mothers displayed a heterogeneous population. In contrast, the infants' sequences were less diverse than those of their mothers. In addition, the sequences from the younger infants' peripheral blood mononuclear cell DNA were more homogeneous than the older infants' sequences. All infants' sequences were different but displayed patterns similar to those seen in their mothers. In the mother-infant pair sequences analyzed, a minor genotype or subtype found in the mothers predominated in their infants. The conserved N-linked glycosylation site proximal to the first cysteine of the V3 loop was absent only in one infant's sequence set and in some variants of two other infants' sequences. Furthermore, the HIV-1 sequences of the epidemiologically linked mother-infant pairs were closer than the sequences of epidemiologically unlinked individuals, suggesting that the sequence comparison of mother-infant pairs done in order to identify genetic variants transmitted from mother to infant could be performed even in older infants. There was no evidence for transmission of a major genotype or multiple genotypes from mother to infant. In conclusion, a minor genotype of maternal virus is transmitted to the infants, and this finding could be useful in developing strategies to prevent maternal transmission of HIV-1 by means of perinatal interventions.  相似文献   

16.
Maternal passive immunity typically plays a critical role in protecting infants from new infections; however, the specific contribution of neutralizing antibodies in limiting mother-to-child transmission of human immunodeficiency virus type 1 is unclear. By examining cloned envelope variants from 12 transmission pairs, we found that vertically transmitted variants were more resistant to neutralization by maternal plasma than were maternal viral variants near the time of transmission. The vertically transmitted envelope variants were poorly neutralized by monoclonal antibodies b12 [corrected] 2G12, 2F5, and 4E10 individually or in combination. Despite the fact that the infant viruses were among the most neutralization resistant in the mother, they had relatively few glycosylation sites. Moreover, the transmitted variants elicited de novo neutralizing antibodies in the infants, indicating that they were not inherently difficult to neutralize. The neutralization resistance of vertically transmitted viruses is in contrast to the relative neutralization sensitivity of viruses sexually transmitted within discordant couples, suggesting that the antigenic properties of viruses that are favored for transmission may differ depending upon mode of transmission.  相似文献   

17.
Genetic analysis of human immunodeficiency virus type 1 (HIV-1) from cases of mother-to-infant transmission were analyzed in an effort to provide insights into the viral selection that may occur during transmission, as well as the timing and source of transmitted viruses. HIV-1 env genes obtained from seven mothers and their perinatally infected infants in Sweden were studied. Five envelope sequence clades (A to E) were found to be represented. We used a heteroduplex tracking assay (HTA) to assess the genetic relatedness between early viral isolates from the infants and serial maternal virus populations taken during pregnancy and at delivery. HTA findings were used to select for DNA sequence analysis maternal virus populations that were either closely or more distantly related to the infant virus. In each case, nucleotide sequence analysis confirmed the genetic relationships inferred by the HTA. Only maternal peripheral blood was sampled, and large sets of maternal specimens throughout pregnancy were generally not available. However, no consistent correlation was found to support the hypothesis that infant viruses should match blood-derived maternal virus genotypes found early in pregnancy if infants were found to be infected at birth or, conversely, that infant viruses should match blood-derived maternal virus genotypes found at delivery if infants were found to be infected only some time later.  相似文献   

18.
There is considerable variability in host susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, but the host genetic determinants of that variability are not well understood. In addition to serving as a block for cross-species retroviral infection, TRIM5 was recently shown to play a central role in limiting primate immunodeficiency virus replication. We hypothesized that TRIM5 may also contribute to susceptibility to mucosal acquisition of simian immunodeficiency virus (SIV) in rhesus monkeys. We explored this hypothesis by establishing 3 cohorts of Indian-origin rhesus monkeys with different TRIM5 genotypes: homozygous restrictive, heterozygous permissive, and homozygous permissive. We then evaluated the effect of TRIM5 genotype on the penile transmission of SIVsmE660. We observed a significant effect of TRIM5 genotype on mucosal SIVsmE660 acquisition in that no SIV transmission occurred in monkeys with only restrictive TRIM5 alleles. In contrast, systemic SIV infections were initiated after preputial pocket exposures in monkeys that had at least one permissive TRIM5 allele. These data demonstrate that host genetic factors can play a critical role in restricting mucosal transmission of a primate immunodeficiency virus. In addition, we used our understanding of TRIM5 to establish a novel nonhuman primate penile transmission model for AIDS mucosal pathogenesis and vaccine research.  相似文献   

19.
Natural hosts of simian immunodeficiency virus (SIV), African green monkeys (AGMs), rarely transmit SIV via breast-feeding. In order to examine the genetic diversity of breast milk SIV variants in this limited-transmission setting, we performed phylogenetic analysis on envelope sequences of milk and plasma SIV variants of AGMs. Low-diversity milk virus populations were compartmentalized from that in plasma. However, this compartmentalization was transient, as the milk virus lineages did not persist longitudinally.  相似文献   

20.
Since the demonstration that almost 80% of human immunodeficiency virus type 1 (HIV-1) infections result from the transmission of a single variant from the donor, biological features similar to those of HIV mucosal transmission have been reported for macaques inoculated with simian immunodeficiency virus (SIV). Here we describe the early diversification events and the impact of challenge doses on viral kinetics and on the number of variants transmitted in macaques infected with the chimeric simian/human immunodeficiency virus SHIV(sf162p4). We show that there is a correlation between the dose administered and the number of variants transmitted and that certain inoculum variants are preferentially transmitted. This could provide insight into the viral determinants of transmission and could aid in vaccine development. Challenge through the mucosal route with high doses results in the transmission of multiple variants in all the animals. Such an unrealistic scenario could underestimate potential intervention measures. We thus propose the use of molecular evolution analysis to aid in the determination of challenge doses that better mimic the transmission dynamics seen in natural HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号