首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Chloroplast transformation has an extraordinary potential for antigen production in plants because of the capacity to accumulate high levels of recombinant proteins and increased biosafety due to maternal plastid inheritance in most crops. In this article, we evaluate tobacco chloroplasts transformation for the production of a highly immunogenic epitope containing amino acid residues 135–160 of the structural protein VP1 of the foot and mouth disease virus (FMDV). To increase the accumulation levels, the peptide was expressed as a fusion protein with the β-glucuronidase reporter gene (uidA). The recombinant protein represented the 51% of the total soluble proteins in mature leaves, a level higher than those of the Rubisco large subunit, the most abundant protein in the leaf of a wild-type plant. Despite this high accumulation of heterologous protein, the transplastomic plants and wild-type tobacco were phenotypically indistinguishable. The FMDV epitope expressed in transplastomic plants was immunogenic in mice. These results show that transplastomic tobacco express efficiently the recombinant protein, and we conclude that this technology allows the production of large quantities of immunogenic proteins.  相似文献   

4.
5.
Chloroplast transformation is a promising approach for the commercial production of recombinant proteins in plants. However, gene containment still remains an issue for the large-scale cultivation of transplastomic plants in the field. Here, we have evaluated the potential of using tobacco transplastomic cell suspensions for the fully contained production of a modified form of the green fluorescent protein (GFP+) and, a vaccine antigen, fragment C of tetanus toxin (TetC). Expression of these proteins in cell suspension cultures (and calli) was much less than in leaves, reaching 0.5%-1.5% of total soluble protein (TSP), but still produced 2.4-7.2 mg/L of liquid culture. Much better expression levels were achieved with a novel protein production platform in which transgenic cell suspension cultures were placed in a temporary immersion bioreactor in the presence of Thidiazuron to initiate shoot formation. GFP+ yield reached 660 mg/L of bioreactor (33% TSP), and TetC accumulated to about 95 mg/L (8% TSP). This new production platform, combining the rapid generation of transplastomic cell suspension cultures and the use of temporary immersion bioreactors, is a promising route for the fully contained low-cost production of recombinant proteins in chloroplasts.  相似文献   

6.
Cervical cancer is the second most prevalent cancer in women worldwide. It is linked to infection with human papillomavirus (HPV). As the virus cannot be propagated in culture, vaccines based on virus-like particles have been developed and recently marketed. However, their high costs constitute an important drawback for widespread use in developing countries, where the incidence of cervical cancer is highest. In a search for alternative production systems, the major structural protein of the HPV-16 capsid, L1, was expressed in tobacco chloroplasts. A very high yield of production was achieved in mature plants (approximately 3 mg L1/g fresh weight; equivalent to 24% of total soluble protein). This is the highest expression level of HPV L1 protein reported in plants. A single mature plant synthesized approximately 240 mg of L1. The chloroplast-derived L1 protein displayed conformation-specific epitopes and assembled into virus-like particles, visible by transmission electron microscopy. Furthermore, leaf protein extracts from L1 transgenic plants were highly immunogenic in mice after intraperitoneal injection, and neutralizing antibodies were detected. Taken together, these results predict a promising future for the development of a plant-based vaccine against HPV.  相似文献   

7.
霍乱毒素B亚基(CTB)是良好的免疫佐剂和载体蛋白。本研究通过定点突变,在CTB基因(ctxB)3′端终止密码前引入了限制性内切酶EcoRI,构建了质粒pMC05。pMC05中CTB与下游lacZ′基因阅读框架相同,转化大肠杆菌后能够表达CTB与β-半乳糖苷酶α肽的融合蛋白;所表达的融合蛋白能与GM1结合,说明融合蛋白保持CTB的基本高级结构和生物学活性;融合蛋白能与抗-CTB抗体结合,说明融合蛋白具有CTB的抗原性。以上结果表明:通过将外源抗原决定簇基因融合至ctxB的3′端,在大肠杆菌中表达融合蛋白,构建基因工程肽苗是可行的。还探索了转录终止序列对融合基因蛋白表达水平的影响,构建了高效表达融合蛋白的载体-宿主系统。  相似文献   

8.
霍乱弧菌CTB蛋白具有免疫佐剂活性。本研究根据已发表CTB基因的序列设计一对引物,从一株霍乱弧菌中扩增出CTB基因,测序后发现该基因全长375 bp,与国内分离的六株CTB基因的同源性达96.0%~99.2%。将该基因与pTWIN1连接构建了原核表达载体pTWIN1-CTB,重组表达载体转化BL21(DE3)表达菌株,0.8 mmol/L IPTG诱导4 h后,收获的细菌总蛋白SDS-PAGE电泳显示CTB在原核表达系统中得到表达,融合蛋白大小与理论值符合,蛋白产量占细菌总蛋白的20%左右,主要以包涵体形式存在,western杂交和GM1-ELISA结果表明重组蛋白具有免疫原性和粘膜佐剂活性。  相似文献   

9.
The B subunits of enterotoxigenic Escherichia coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are candidate vaccine antigens. Integration of an unmodified CTB-coding sequence into chloroplast genomes (up to 10,000 copies per cell), resulted in the accumulation of up to 4.1 % of total soluble tobacco leaf protein as functional oligomers (410-fold higher expression levels than that of the unmodified LTB gene expressed via the nuclear genome). However, expression levels reported are an underestimation of actual accumulation of CTB in transgenic chloroplasts, due to aggregation of the oligomeric forms in unboiled samples similar to the aggregation observed for purified bacterial antigen. PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that the chloroplast- synthesized CTB assembled into oligomers and were antigenically identical with purified native CTB. Also, binding assays confirmed that chloroplast-synthesized CTB binds to the intestinal membrane GM1-ganglioside receptor, indicating correct folding and disulfide bond formation of CTB pentamers within transgenic chloroplasts. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed in chloroplasts. Introduced genes were inherited stably in subsequent generations, as confirmed by PCR and Southern blot analyses. Increased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant-based oral vaccines and fusion proteins with CTB needing oral administration commercially feasible. Successful expression of foreign genes in transgenic chromoplasts and availability of marker-free chloroplast transformation techniques augurs well for development of vaccines in edible parts of transgenic plants. Furthermore, since the quaternary structure of many proteins is essential for their function, this investigation demonstrates the potential for other foreign multimeric proteins to be properly expressed and assembled in transgenic chloroplasts.  相似文献   

10.
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108–120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2108-120 epitope were found after both methods of vaccine delivery.  相似文献   

11.
Chloroplast transformation technology is a promising approach for the production of foreign proteins in plants with expression levels of up to 70 % of total soluble protein (TSP) achieved in tobacco. However, expression of foreign protein in the chloroplast can lead to drastic or even lethal effects in transplastomic plants grown in soil, thereby potentially limiting the applicability of this technology. For instance, previous attempts to express the outer surface protein A (OspA) from Borrelia burgdorferi in tobacco chloroplasts led to plant death when expressed at 10 % TSP. We show here that this earlier transplastomic line, as well as a new plant line, OspA:YFP, expressing OspA fused to the yellow fluorescent protein, can be propagated in temporary immersion bioreactors (TIBs) using AlkaBurst? technology to produce leafy biomass that expressed OspA at levels of up to 7.6 % TSP, to give a maximum yield of OspA of about 108 mg/L. Our results show that TIBs provide an alternative method for the production of transplastomic biomass expressing proteins toxic for plants and is a particularly useful approach when ‘absolute’ containment is required.  相似文献   

12.
The coat protein (CP) of Papaya ringspot virus (PRSV) was analyzed for presentation of the antigenic peptide of animal virus, Canine parvovirus (CPV), in Escherichia coli (E. coli). The 45 nucleotides fragment coding for the 15-aa peptide epitope of the CPV-VP2 protein was either inserted into the PRSV-cp gene at the 5', 3' ends, both 5' and 3' ends or substituted into the 3' end of the PRSV cp gene. Each of the chimeric PRSV cp genes was cloned into the pRSET B vector under the control of the T7 promoter and transformed into E. coli. The recombinant coat proteins expressed from different chimeric PRSV-cp genes were purified and intraperitoneally injected into mice. All of the recombinant coat proteins showed strong immunogenicity and stimulate mice immune response. The recombinant coat proteins containing the CPV epitope insertion at the C terminus and at both N and C termini elicited ten times higher specific antisera in immunized mice compared with the other two recombinant coat proteins which contain the CPV epitope insertion at the N terminus and substitution at the C terminus.  相似文献   

13.
叶绿体表达系统为植物源重组药用蛋白和亚基疫苗的生产提供了一个有效的途径。为验证SARS亚基疫苗在叶绿体中表达的可行性,以及为植物源SARS亚基疫苗的生产提供一套高效、低成本的技术平台,本研究将人工优化合成的SARS-CoV突刺蛋白(S蛋白)受体结合区序列RBD与载体分子CTB融合基因导入烟草叶绿体基因组中。PCR和Southern杂交分析表明,外源融合基因已整合到烟草叶绿体基因组中,并获得同质化。Western杂交分析表明,重组融合蛋白CTB-RBD在叶绿体转基因烟草中获得表达,且主要以可溶性单体形式存在。ELISA分析表明,在不同生长阶段、不同生长部位和不同时间点烟草叶片中,重组融合蛋白CTB-RBD的表达水平呈现明显的变化。重组蛋白在成熟叶片中的表达水平最高可以达到10.2%TSP。本研究通过SARS亚基疫苗RBD在烟草叶绿体中的高效表达,有望为植物源SARS亚基疫苗的生产以及SARS血清抗体的检测提供一个有效的技术平台。  相似文献   

14.
Mucosally induced tolerance is an attractive strategy for preventing or reducing autoimmune diseases. Here, we produced a recombinant CTB fusion protein linked with autoantigen T cell epitope of insulin B chain peptide 9-23 (C19S) at levels up to 200 mg/L culture media in Brevibacillus choshinensis secretion-expression system. Receptor-competitive assay showed that the CTB-insulin peptide binds to GM1 receptor almost equivalent degree as the native form of CTB. Non-obese diabetes (NOD) mice that spontaneously develop an insulin-dependent diabetes were nasally immunized with CTB-insulin peptide (5 microg) for three times. The nasal treatment significantly reduced the development of insulin-dependent diabetes and peptide specific DTH responses after systemic immunization with the insulin peptide B 9-23(C19S) in CFA. Nasal administration of as high as 50 microg of the peptide alone demonstrated a similar level of the disease inhibition. In contrast, all mice given 5 microg of the insulin peptide alone or 5 microg of insulin peptide with 25 microg of the free form of CTB did not lead to the suppression of diabetes development and DTH responses. Because molecular weight of the insulin peptide is about one tenth of that of the CTB-insulin peptide, the results demonstrate that the recombinant hybrid of autoantigen and CTB increased its tolerogenic potential for nasal administration by up 100-fold on molar base of autoantigen peptide. Taken together, nasally-induced tolerance by administration of the recombinant B. choshinensis-derived hybrid protein of CTB and autoantigen T cell-epitope peptide could be useful mucosal immunetherapy for the control of T cell-mediated autoimmune diseases.  相似文献   

15.
Porcine epidemic diarrhea virus (PEDV) belongs to the Coronaviridae family and causes acute enteritis in pigs. A fragment of the large spike glycoprotein, termed the S1D epitope (aa 636–789), alone and fused with cholera toxin B subunit, were independently cloned into plant expression vectors, yielding plasmids pMYV717 and pMYV719, respectively. Plant expression vectors were transformed into Agrobacterium tumefaciens and subsequently infiltrated into Nicotiana benthamiana leaves. The highest expression level of S1D was found at 2?days post infiltration (dpi), reached 0.04?% of total soluble protein, and rapidly decreased thereafter. The expression and assembly of CTB–S1D fusion protein were confirmed by Western blot and GM1-ELISA. The highest expression level of CTB–S1D fusion protein was 0.07?% of TSP at 4 dpi, with a rapid decrease thereafter. In the presence of p19 protein from tomato bushy stunt virus, the S1D and CTB–S1D protein levels peaked at 6 dpi and were fourfold to sevenfold higher than in the absence of p19, respectively. After oral administration of transiently expressed CTB–S1D fusion protein, or with bacterial cholera toxin or rice callus expressing mutant cholera toxin 61F, mice exhibited significantly greater serum IgG and sIgA levels against bacterial CTB and S1D antigen, peaking at week 6. Transiently expressed CTB–S1D fusion protein will be administered orally to pigs to assess the immune response against PEDV.  相似文献   

16.
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long-term storage at room temperature. To our knowledge, this is the first report of expression of TB vaccine antigens in chloroplasts.  相似文献   

17.
Lumbrokinase (LK) is a group of serine proteases with strong fibrinolytic and thrombolytic activities and is useful for treating diseases caused by thrombus. Cholera toxin B subunit (CTB) has been widely used to facilitate antigen delivery by serving as an effective mucosal carrier molecule for the induction of oral tolerance. We investigate here the application of CTB as a transmucosal carrier in enhancing its fusion protein‐LKs effect to protect rats against thrombosis. Thus, in this study, CTB‐LK fusion gene separated by a furin cleavage site was expressed in seeds of Helianthus annuus L. The activity of recombinant protein in seeds of transgenic sunflower was confirmed by Western blot analysis, fibrin plate assays and GM1‐ganglioside ELISA. The thrombosis model of rats and mice revealed that the oral administration of peeled seeds of sunflower expressing CTB‐LK had a more significant anti‐thrombotic effect on animals compared with that administration of peeled seeds of sunflower expressing LK. It is possible to conclude that CTB can successfully enhance its fusion protein to be absorbed in rats or mice thrombosis model. The use of CTB as a transmucosal carrier in the delivery of transgenic plant‐derived oral therapeutic proteins was supported. In addition, for the purpose of that recombinant CTB‐LK was designed for oral administration, thus the expression of CTB‐LK in edible sunflower seeds eliminated the need for downstream processing of proteins. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1029–1039, 2014  相似文献   

18.
The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine‐rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine‐rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ‐gliadin‐δ‐zein and γ‐δ‐zein, as well as δ‐zein co‐expressed with β‐zein, all formed protein bodies. However, the γ‐gliadin‐δ‐zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ‐gliadin‐δ‐zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ‐gliadin‐δ‐zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ‐gliadin‐GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ‐gliadin‐δ‐zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ‐gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants.  相似文献   

19.
Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant‐derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60‐based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60SEKDEL) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self‐fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48–400 µg potato‐derived VP60 [ Castanon, S., Marin, M.S., Martin‐Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73 , 4452–4455; Castanon, S., Martin‐Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162 , 87–95] to 0.56–0.28 µg antigenic VP60 (measured with VP60 enzyme‐linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea‐derived CTB::VP60 showed anti‐VP60‐specific antibodies, similar to RikaVacc®‐immunized rabbits, and survived RHDV challenge.  相似文献   

20.
Plants have been recognized as a promising production platform for recombinant pharmaceutical proteins. The human immunodeficiency virus Gag (Pr55gag) structural polyprotein precursor is a prime candidate for developing a HIV-1 vaccine, but, so far, has been expressed at very low level in plants. The aim of this study was to investigate factors potentially involved in Pr55gag expression and increase protein yield in plant cells. In transient expression experiments in various subcellular compartments, the native Pr55gag sequence could be expressed only in the chloroplast. Experiments with truncated subunits suggested a negative role of the 5′-end on the expression of the full gene in the cytosol. Stable transgenic plants were produced in tobacco by Agrobacterium-mediated nuclear transformation with protein targeted to plastids, and biolistic-mediated plastid transformation. Compared to the nuclear genome, the integration and expression of the gag transgene in the plastome resulted in significantly higher protein accumulation levels (up to 7–8% TSP, equivalent to 312–363 mg/kg FW). In transplastomic plants, a 25-fold higher protein accumulation was obtained by translationally fusing the Pr55gag polyprotein to the N-terminus of the plastid photosynthetic RbcL protein. In chloroplasts, the Pr55gag polyprotein was processed in a pattern similar to that achieved by the viral protease, the processing being more extended in older leaves of mature plants. The Gag proteins produced in transgenic plastids were able to assemble into particles resembling VLPs produced in baculovirus/insect cells and E. coli systems. These results indicate that plastid transformation is a promising tool for HIV antigen manufacturing in plant cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. IGV publication no. 330  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号