首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantity of translatable mRNA of glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49) in primary cultures of adult rat hepatocytes subjected to different hormonal conditions was determined with a reticulocyte-lysate, cell-free system. The level of glucose-6-phosphate dehydrogenase mRNA was about 5-fold higher in the presence of insulin than in its absence. This increase of glucose-6-phosphate dehydrogenase mRNA reached a maximum 12 h after the addition of insulin. The maximum level of induction of glucose-6-phosphate dehydrogenase mRNA required 10(-8) M insulin. Glucagon and triiodothyronine had no effect on the glucose-6-phosphate dehydrogenase mRNA level. The increase of glucose-6-phosphate dehydrogenase activity correlated with the increase in level of mRNA of this enzyme. This suggests that the changes in glucose-6-phosphate dehydrogenase activity in response to the above hormonal changes are primarily due to changes in the amount of mRNA coding for this enzyme.  相似文献   

2.
3.
The capacity of the following peptides to stimulate steroidogenesis in suspensions of capsule (largely glomerulosa) and fasciculata/reticularis cells from rat adrenals was studied: ACTH1–24, ACTH1–13-amide, α-MSH, γ1-MSH, γ-MSH precursor, ACTH4–10, CLIP, and ovine and human β-lipotropin. Only α-MSH and ACTH1–13-amide stimulated glomerulosa cells alone, without effect on fasciculata/reticularis cells. Like ACTH1–24 the two samples of β-lipotropin stimulated both capsule and inner zone cell types in a similar manner. Their activity is attributable to slight ACTH1–39 contamination, as shown by HPLC fractionation. The other peptides lacked any activity. It is likely that the predicted specific glomerulosa stimulant from the pituitary closely resembles α-MSH.  相似文献   

4.
5.
Primary cultures of adult rat hepatocytes, grown in modified minimal essential medium (Eagle's) containing 10% calf serum, could be induced into DNA replication by combinations of epidermal growth factor (EGF), insulin and glucagon. The three hormones acted synergistically, and cells began entering DNA synthesis 48 h after hormone addition. The ability of the hormones to stimulate DNA synthesis was enhanced by plating cells at high cell concentrations or by conditioned medium, and was diminished by daily medium change. The contribution of glucagon to DNA synthesis was replaced by cAMP plus 1-methyl, 3-isobutyl xanthine or by adrenergic agents. Evidence is presented which suggests that all three hormones are required on the first day of culture, and that EGF and insulin are also required after the first day. This appears to be a useful system for studies on the hormonal initiation of growth in quiescent cells.  相似文献   

6.
Developmental increase of tryptophan oxygenase (L--tryptophan: oxygen 2,3-oxidoreductase (decyclizing), EC 1.13.11.11) was studied using hepatocytes of neonatal rats in primary culture. Hepatocytes from rats of 2–30-days-old were isolated and cultured for 2 days. In cultured hepatocytes of 2-day-old rats, tryptophan (2.5 mM), dexamethasone (1.10?5 M) and glucagon (1.10?7 M) did not cause the appearance of tryptophan oxygenase. But the enzyme activity became detectable, when heptocytes from 5-day-old rats were incubated wiht tryptophan, the oxygenase could be induced precociously by dexamethasone, but not by glucagon. The effect of glucagon was first seen 2 weeks after birth. However, in hepatocytes of 9-day-old rats glucagon stimulated formation of cyclic AMP and protein kinase activity (EC 2.7.1.37) and also induced tyrosine aminotransferase (EC 2.6.1.5). When heptocytes of 9-day-old rats were cultured for 4 days, their tryptophan oxygenase became inducible by glucagon. Insulin almost completely inhibited precocious appearance of the enzyme activity evoked by tryptophan plus dexamethasone in hepatocytes of 9-day-old rats. These results suggest that the appearance of tryptophan oxygenase in rat liver during development is due to first the onset of gene coding for tryptophan oxygenase and then stimulation by the sequential of glucocorticoid and glucagon.  相似文献   

7.
8.
The transport of histidine and glutamine via system N in cultured hepatocytes was found to be subject to hormonal control. This long-term regulation showed the following characteristics. The transport capacity for histidine and glutamine (system N) increased slowly in response to the combination of dexamethasone and insulin to about 4-fold that of controls after 18-30 h. A similar time course was found for the stimulation of system N (2.5-fold) by dexamethasone and glucagon. In contrast the uptake of alpha-aminoisobutyric acid (system A) was rapidly stimulated 3-fold by dexamethasone and insulin and 5-fold by dexamethasone and glucagon within 3-6 h but decreased towards control rates after 24 h of cultivation in minimal essential medium. Dexamethasone, insulin and glucagon each stimulated glutamine uptake about 2-fold in cultures maintained in W/AB 77 medium, while the combination of dexamethasone with either glucagon or insulin resulted in a 3-4-fold increase. Dexamethasone was most effective at about 0.1 microM. Higher concentrations were less efficient. Insulin reached its optimal effect at concentrations above 1 microM. Kinetic analysis revealed that the increased capacity of glutamine transport in response to hormones was due to an increase in Vmax, while Km was essentially unchanged. The hormone-induced stimulation of system N was prevented by cycloheximide. The induced uptake of glutamine was inhibited by excess amounts of asparagine and histidine but not of alpha-methylaminoisobutyric acid or cysteine. These results clearly differentiate the hormonal regulation of system N from that of system A.  相似文献   

9.
10.
11.
12.
Summary The conditions for obtaining representative, primary adult rat hepatocyte cultures were explored. The methods applied included enzymatic liver perfusion which was nondestructive to hepatocytes, the prevention of aggregation of dissociated cells and the selective attachment of viable cells. These procedures yielded a recovery of 50% of the liver cells which gave rise to cultures representing 14% of the total liver cells. The cultures were composed of homogeneous epithelial-like cells cytologically similar to hepatocytes and possessed a number of liver-specific enzymes. There was virtually no cell division initially and most cells died between 24 and 48 hr. Insulin enhanced the attachment of the liver cells, altered their morphology, but did not prolong cell survival. This study was supported by grant no. BC 133 from the American Cancer Society.  相似文献   

13.
Summary Primary monolayer cell cultures of adult rat hepatocytes underwent change in morphology and substantial cell loss between 1 and 3 days postinoculation. Dexamethasone-supplementation (1μM) of the culture medium maintained the polygonal epithelial morphology of the hepatocytes and increased longevity such that over 80% of the cells survived for 3 days and at least 30% for 8 or 9 days. This enhancement of survival was obtained up to 48 hr postinoculation, but the earlier the time of dexamethasone supplementation the greater the effect. Removal of dexamethasone resulted in a decrease in longevity. The positive effect of dexamethasone on longevity was observed following dexamethasone replacement of insulin in supplemented cultures, but the combination of insulin and dexamethasone resulted in poorer survival than with dexamethasone alone. The results are interpreted to indicate that dexamethasone provided a requirement of the in vitro environment for survival and suggest that elaboration of a complex medium is required to maintain hepatocytes in culture. This study was supported by an Alexander Ralston Peacock Memorial Grant for Cancer Research (No. BC-133A) from the American Cancer Society.  相似文献   

14.
The effects of nutrients and hormones on the mRNA levels of acetyl-CoA carboxylase, fatty acid synthase, malic enzyme, and glucose 6-phosphate dehydrogenase were examined in primary cultures of rat hepatocytes during the process of induction. The addition of both glucose and insulin to the culture medium markedly enhanced the lipogenic enzyme mRNA induction due to either of them, in 16 h. Fructose or glycerol proved to be an effective substitute for glucose, suggesting that glycolytic metabolites were involved in the mRNA induction. It is remarkable that mRNA induction of acetyl-CoA carboxylase was the most sensitive to glucose and also to insulin among the lipogenic enzymes. Polyunsaturated fatty acids markedly reduced the mRNA induction of lipogenic enzymes. Dexamethasone enhanced all the lipogenic enzyme mRNA induction by insulin. On the other hand, triiodothyronine addition greatly increased the mRNA concentrations of lipogenic enzymes, but dexamethasone decreased rather than increased the mRNA induction by triiodothyronine. The effects of insulin on the induction of the lipogenic enzyme mRNAs were similar, but those of triiodothyronine were not. Triiodothyronine markedly enhanced malic enzyme mRNA induction by insulin with dexamethasone, and tended to enhance the induction of the acetyl-CoA carboxylase and fatty acid synthase mRNAs, but not that of glucose 6-phosphate dehydrogenase mRNA. It appeared that insulin and triiodothyronine synergistically enhanced lipogenic enzyme mRNA induction by glucose, but the mechanisms were different.  相似文献   

15.
Deduced primary structure of rat tryptophan-2,3-dioxygenase   总被引:1,自引:0,他引:1  
The complete amino acid sequence of the tryptophan 2,3-dioxygenase (TO) of rat liver was determined from the nucleotide sequence of a full length TO cDNA isolated from a rat liver cDNA library and determined its primary structure. TO was encoded in a mRNA of about 1.7 kb containing an open reading frame of 1218 bp. According to the deduced amino acid sequence, the monomeric polypeptide of TO consisted of 406 amino acid residues with a calculated molecular weight of 47,796 daltons. It has twelve histidine residues around its hydrophobic region, which has homology with some heme proteins and oxygenase, suggesting that this hydrophobic region might to be the core of TO for the activity.  相似文献   

16.
Amino acid transport was studied in primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion technique and maintained as a monolayer in a serum-free culture medium. These cells carried out gluconeogenesis from three carbon precursors (alanine, pyruvate, and lactate) in response to glucagon addition. Amino acid transport was assayed by measuring the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB). Addition of insulin or glucagon to culture rat liver parenchymal cells resulted in an increased influx of AIB transport. The glucocorticoid, dexamethasone, when added alone to cultures did not affect AIB transport. However, prior or simultaneous addition of dexamethasone to glucagon-treated cells caused a strong potentiation of the glucagon induction of AIB transport. Kinetic analysis of the effects of insulin and glucagon demonstrated that insulin increased the Vmax for transport without changing the Km while glucagon primarily decreased the Km for AIB transport. The effect of dexamethasone was to increase the Vmax of the low Km system.  相似文献   

17.
Effect of sodium butyrate on primary cultures of adult rat hepatocytes   总被引:2,自引:0,他引:2  
Summary Sodium butyrate, at millimolar concentrations, seems to mediate or initiate multiple effects on many mammalian cells in culture. Although many transformed cell lines respond to butyrate treatment with acquisition of normal cellular characteristics, the effect of butyrate on a normal cell type, the parenchymal hepatocyte, has not been studied. Serum-free primary cultures of adult rat hepatocytes maintain many adult characteristics, yet after several days in culture a loss of adult characteristics occurs while fetal characteristics are often reexpressed. Therefore, we investigated whether butyrate treatment would improve the morphologic and biochemical characteristics of cultured hepatocytes. Exposure to 5 mM butyrate for 3 d did not affect hepatocyte viability or morphology but retarded the progressive decline in cytochrome P-450 levels and 5′-nucleotidase activity. The spontaneous increase in alkaline phosphatase activity was reduced and the induction of tyrosine aminotransferase was inhibited after 3 d in culture. The fetal liver characteristic, gamma glutamyltranspeptidase, was not affected by butyrate treatment. Results of this study suggest that butyrate represents a nontoxic compound capable of improving the maintenance of cell culture characteristics of adult rat hepatocytes.  相似文献   

18.
19.
Y Sawai  Y Suma  K Tsukada 《Life sciences》1986,38(21):1975-1980
The activities of S-adenosylmethionine synthetase isozymes were studied using adult rat hepatocytes in primary culture. Hepatocytes from adult rats were isolated and cultured for several days. The activities of the synthetase isozymes did not change during primary culture. The activity of the alpha-form increased with increasing ethionine plus adenine or methionine in the medium, and reached about 5 fold after 2 days. However, the increased activity of the beta-form showed less than twice.  相似文献   

20.
The effects of insulin, glucagon or Dexamethasone (DEX) and of glucagon with insulin or DEX were examined on the uptake of 2-amino [1-14C]isobutyric acid (AIB) and N-Methyl-2-amino [1-14C]isobutyric acid (NMe AIB) in monolayer cultures of rat hepatocytes. Insulin and glucagon stimulated the uptake of both the amino acids and DEX inhibited it, showing that all three of these hormones regulate the A system (the sodium-dependent system that permits the transport of NMe AIB) for amino acid transport in these cultures. Experiments investigating the transport of aminocyclopentane-1-carboxylic acid, 1- [carboxyl-14C] in the presence of excess AIB or in the absence of sodium showed that insulin had no effect on the activity of the L system (the sodium-independent system that prefers leucine). Experiments on the uptake of AIB in the presence of excess NMe AIB showed insulin had no effect on the transport activity of the ASC system (the sodium-dependent system that does not transport NEe AIB). Insulin concentrations ranging from 0.1 nM to 100 nM did not antagonize the stimulatory effect of optimum or suboptimum concentrations of glucagon on the uptake of either AIB or NMe AIB. Similarly, glucagon did not antagonize the stimulatory effect of optimum or suboptimum concentrations of insulin on the uptake of both the amino acids. The combined effect of insulin and glucagon was additive on the rate as well as the cumulative uptake of both AIB and NMe AIB. DEX alone inhibited the transport of both AIB and NMe AIB by about 25%, while glucagon caused a 2–3-fold increase; however, the addition of glucagon to cultures containing DEX caused a 7–8-fold increase in the uptake of both AIB and NMe AIB when compared to cultures containing DEX alone. The effect of insulin on the levels of cAMP was also investigated. Insulin had no effect on the cAMP levels in cultures treated or untreated with optimum or suboptimum concentrations of glucagon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号