首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we assessed whether endogenous CCK is involved in the regulation of interdigestive gastrointestinal and gallbladder motility in conscious dogs with force transducers chronically implanted in the gastric antrum, duodenum, jejunum and gallbladder. L364718 at a dose of 1.0 mg/kg was used as a specific and potent CCK receptor blocker, and its effect on spontaneous interdigestive motility and plasma motilin release were examined. Additionally, the contractile activity of exogenous synthetic canine motilin (20-100 ng/kg) with or without pretreatment with L364718 at a dose of 1.0 mg/kg was assessed. Whether the blocking effect of L364718 on CCK receptors was sufficient or not was verified by giving CCK-OP at a bolus dose of 10 ng/kg. As a result, cyclic changes in interdigestive motor activity and the plasma motilin concentration were not affected by pretreatment with L364718. L364718 also did not affect motilin-induced interdigestive contractile activity in the gastrointestinal tract and gallbladder. On the other hand, the effect of CCK-OP was completely abolished by pretreatment with L364718. It is concluded that endogenous CCK is not involved in the regulation of spontaneous and motilin-induced interdigestive contractions in the canine gastrointestinal tract and gallbladder.  相似文献   

2.
In conscious dogs we studied the effects of a new cholecystokinin (CCK) antagonist (coded CR 1505) on CCK8-stimulated exocrine pancreatic secretion and release of pancreatic polypeptide (PP). Graded doses of CCK8 (25-400 ng kg-1h-1) were infused i.v. Experiments were repeated against a background infusion of CR 1505 at different doses (0.1, 1 and 10 mg kg-1h-1). The lowest dose of CR 1505 had no biological effects. However, at the upper two doses the compound significantly inhibited the CCK8-stimulated PP release. Furthermore, a significant inhibition of exocrine pancreatic protein secretion was observed with 10 mg kg-1h-1 of CR 1505 (P less than 0.05). The results suggest that CR 1505 could be a useful tool in defining the physiological role of CCK in vivo.  相似文献   

3.
The regulatory mechanisms of postprandial pancreatic hyperemia are not well characterized. The aim of this study is to clarify the role of cholecystokinin (CCK) in the intestinal phase of pancreatic circulation. Pancreatic, gastric, and intestinal blood flows were measured by ultrasound transit-time blood flowmeters in five conscious dogs. Pancreatic and gastric secretion and blood pressure were also monitored. Synthetic CCK octapeptide (CCK-8) or gastrin heptadecapeptide (gastrin-17) was infused intravenously, and milk was infused into the duodenum with or without loxiglumide, a specific CCK-A receptor antagonist. CCK-8 induced dose-related increases of pancreatic, but not gastric or intestinal, blood flow and protein secretion without affecting systemic blood pressure. Gastrin-17 did not affect pancreatic blood flow. An intraduodenal infusion of milk increased pancreatic and intestinal blood flows and pancreatic protein secretion. Loxiglumide completely inhibited pancreatic blood flow and protein responses to CCK-8 and milk but not the intestinal blood flow response. CCK is a potent and specific pancreatic vasodilator, with its effect mediated by CCK-A receptors. CCK plays an important role in the regulation of the intestinal phase of the pancreatic circulation in dogs.  相似文献   

4.
In five conscious dogs we studied the effect of proglumide, a cholecystokinin (CCK) antagonist, on caerulein-stimulated pancreatic secretion and release of pancreatic polypeptide (PP). Graded doses of caerulein (15-240 ng/kg per h) were infused intravenously. Experiments were repeated with a fixed infusion of proglumide (40 mg/kg per h). Release of PP following increasing doses of caerulein was significantly inhibited by proglumide (P less than 0.01). However, proglumide did not significantly affect caerulein-stimulated pancreatic protein secretion. Proglumide might be useful in defining the physiological role of CCK.  相似文献   

5.
In isolated dispersed pancreatic acini, we have characterized the interactions between cholecystokinin (CCK) and CCK receptors by simultaneously measuring CCK-33 immunoreactivity and CCK bioactivity. Incubation of acinar cells with CCK-33 at cell density of 0.2-0.3 mg acinar protein per ml resulted in stimulation of amylase release concomitant with significant and time-dependent decrease of the immunoreactive CCK. With L-364,718 (0.1 microM), a specific CCK receptor antagonist, immunoreactive CCK levels in the media were not significantly altered during incubation; however, CCK-stimulated amylase release was almost completely abolished (94% inhibition). Vasoactive intestinal peptide (1 nM) significantly potentiated CCK stimulated amylase release without affecting immunoreactive CCK in the media. Insulin (167 nM) did not affect the CCK stimulated amylase release or immunoreactive CCK in the media. Incubation of acinar cells with CCK-33 at 4 degrees C did not affect the levels of immunoreactive CCK; however, a significant change in levels of immunoreactive CCK were found at 37 degrees C at 90 min. Incubation of cell free medium with CCK-33 in the presence or absence of secreted enzymes revealed no changes in CCK immunoreactivity in the medium at 90 min. Addition of bacitracin in the incubation media did not affect the CCK immunoreactivity or bioactivity. These findings indicate that in isolated rat pancreatic acini, CCK-33 stimulates amylase release through a receptor that is specifically blocked by L-364,718. Specificity of the interactions of CCK-33 with acinar cells in the media appears to be receptor-mediated and time- and temperature-dependent.  相似文献   

6.
Recent studies demonstrated that cholecystokinin (CCK) at physiological levels stimulates pancreatic enzyme secretion via a capsaicin-sensitive afferent vagal pathway. This study examined whether chemical ablation of afferent vagal fibers influences pancreatic growth and secretion in rats. Bilateral subdiaphragmatic vagal trunks were exposed, and capsaicin solution was applied. Pancreatic wet weight and pancreatic secretion and growth in response to endogenous and exogenous CCK were examined 7 days after capsaicin treatment. Perivagal application of capsaicin increased plasma CCK levels and significantly increased pancreatic wet weight compared with those in the control rats. Oral administration of CCK-1 receptor antagonist loxiglumide prevented the increase in pancreatic wet weight after capsaicin treatment. In addition, continuous intraduodenal infusion of trypsin prevented the increase in plasma CCK levels and pancreatic wet weight after capsaicin treatment. There were no significant differences in the expression levels of CCK-1 receptor mRNA and protein in the pancreas in capsaicin-treated and control rats. Intraduodenal administration of camostat or intravenous infusion of CCK-8 stimulated pancreatic secretion in control rats but not in capsaicin-treated rats. In contrast, repeated oral administrations of camostat or intraperitoneal injections of CCK-8 significantly increased pancreatic wet weight in both capsaicin-treated and control rats. Present results suggest that perivagal application of capsaicin stimulates pancreatic growth via an increase in endogenous CCK and that exogenous and endogenous CCK stimulate pancreatic growth not via vagal afferent fibers but directly in rats.  相似文献   

7.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

8.
Leptin originally described as product of the ob gene has been shown to be expressed in various tissues including the gastrointestinal tract. In this study, we investigated the influence of leptin on the secretion of pancreatic juice in biliary-pancreatic duct cannulated anaesthetised rats and in dispersed rat pancreatic acini in vitro. Exogenous leptin was given in boluses intravenously with or without CCK-8 (12 pmol kg(-1) body weight) in the presence or absence pharmacological CCK(1) receptor blockade, cervical vagotomy, and capsaicin pre-treatment. Administration of leptin (0.1, 1 and 10 microg kg(-1) body weight) did not affect the volume of bile and pancreatic juice while the protein and trypsin outputs were reduced in a dose-dependent manner. In the rats, leptin inhibited CCK-8 stimulated protein and trypsin outputs stronger than the basal pancreatic secretion. The inhibition by leptin was abolished by the pharmacological CCK(1) receptor blockade, cervical vagotomy, and capsaicin pre-treatment. In contrast, leptin did not affect basal and CCK-8-stimulated amylase release from the dispersed rat pancreatic acini in vitro. In conclusion, the results of the present study suggest that leptin does not act directly on the rat pancreatic acinar cells but inhibits the secretion of pancreatic enzymes acting indirectly via a neurohormonal CCK-vagal-dependent mechanism.  相似文献   

9.
In four conscious dogs with chronic gastric and pancreatic Thomas fistulas we studied the effect of 99% pure cholecystokinin-33 (CCK-33) solutions on pancreatic secretion and PP release. CCK-33 was dissolved in 0.154 M NaCl alone or in the same solution containing 1 g per 100 ml dog albumin. The response of pancreatic protein output to increasing doses of CCK-33 (0.5, 1, 2, 4 IDU/kg per h) was significantly (P < 0.05) higher when CCK was dissolved in NaCl with albumin than in NaCl alone. These results were confirmed by measuring CCK immunoreactivity in samples from tips of infusion lines by a gastrin radioimmunoassay. Release of pancreatic polypeptide (PP) following increasing doses of CCK-33 was also significantly (P < 0.05) elevated when CCK was dissolved in an albumin-containing solution. There was a significant (P < 0.02) correlation between plasma concentrations of PP and pancreatic protein output.This study suggests that albumin should be added to CCK-33 solutions to preserve biological activity. The biological effect of CCK-33 may be substantially underestimated if albumin is omitted.  相似文献   

10.
《Journal of Physiology》1997,91(3-5):257-264
The effect of dexloxiglumide, a new potent cholecystokinin (CCK) antagonist, on pancreatic enzyme secretion and growth was studied in the rat. Pancreatic exocrine secretion was studied both in vitro (isolated and perfused pancreatic segments) and in vivo (anaesthetized animals with cannulation of the common bile duct) whereas the trophic effect was investigated after short-term (7 days) administration of the CCK-agonist, caerulein, or camostate (a potent trypsin inhibitor), with or without dexloxiglumide. CCK-8 stimulated amylase release from in vitro pancreatic segments in a concentration-dependent manner. Dexloxiglumide displaced the concentration response curves to CCK-8 to the right without affecting the maximum response, suggesting a competitive antagonism. The Schild plot analysis of data gave a straight line with a slope (0.90±0.36) not significantly different from unity. The calculated pA2 for dexloxiglumide was 6.41 ± 0.38. In vivo experiments confirmed results from in vitro studies since intravenous dexloxiglumide reduced pancreatic exocrine secretion induced by submaximal CCK-8 stimulation (0.5 nmol/kg/h) in a dose-dependent manner, the ID50 being 0.64 mg/kg. Both exogenous and endogenous (released by camostate) CCK increased the weight of the pancreas, the total pancreatic protein and DNA, trypsin and amylase content. Dexloxiglumide (25 mg/kg), administered together with caerulein (1 μg/kg), reduced the peptide-induced increase in pancreatic weight, protein and enzyme content. Similarly, when dexloxiglumide was given together with camostate (200 mg/kg), all the observed changes were reduced by concomitant administration of the antagonist. These results demonstrate the ability of dexloxiglumide to antagonize the effects of CCK on pancreatic secretion and growth, suggesting that this compound is a potent and selective antagonist of CCK-A-receptors in the pancreas.  相似文献   

11.
The influence of cadmium on basal and stimulated plasma levels of gastrin, cholecystokinin (CCK), and pancreatic polypeptide (PP) was investigated in conscious dogs using three doses of cadmium (0.15, 0.5, and 0.75 mg Cd/kg-h). Levels of gastrointestinal (GI) hormones were stimulated with bombesin (BBS), a peptide known to stimulate GI hormone release. Plasma cadmium was measured employing atomic absorption spectrophotometry and GI hormone levels were measured with specific radioimmunoassays (RIA). Basal plasma levels of hormones (pg/mL) in the dogs were in the range (mean ± SE): 38±5 to 44±6 for gastrin, 80±25 to 107±17, for CCK and 120±5 to 142±5 for PP; these levels did not change with cadmium. Significant increases above basal levels in all three hormones were found with infusions of BBS and with BBS plus cadmium. Gastrin levels remained steady during Cd and saline after BBS; however, CCK and PP levels dropped to values that were 68 and 73% less than their stimulated peak levels. With reinfusion of BBS, gastrin, CCK, and PP were significantly elevated above basal; however, the peak values for CCK and PP, but not gastrin, were less than those found during the first BBS infusion. The data suggest that in response to bombesin, cadmium has little or no effect on the release of gastrin, but that is exerts a latent effect on the release of both CCK and PP.  相似文献   

12.
In six conscious dogs with gastric and duodenal cannulas, secretin (164 pmol. kg(-1). h(-1) iv) was given to provide a flow of pancreatic juice of approximately 1 drop/s. Amylase activity was measured in each drop before and after rapid intravenous injection of caerulein (7.4 pmol/kg) or intraduodenal injection of L-tryptophan (1 mmol), sodium oleate (3 mmol), and HCl (3 mmol). All experiments were repeated in the presence of the M1 receptor antagonist telenzepine (81 nmol. kg(-1). h(-) iv) and the cholecystokinin (CCK) receptor antagonist L-364718 (0.1 mg/kg iv). Latency of amylase response (time between injection of stimulant and sustained increase in amylase activity greater than mean + 3 SD of prestimulatory activity) to tryptophan (17 +/- 7 s; n = 6) and oleate (16 +/- 5 s) was significantly (P < 0.05) shorter than to caerulein (28 +/- 4 s) and HCl (120 +/- 47 s). Telenzepine significantly increased the latency of amylase response to tryptophan and oleate by >10-fold but not the latency to caerulein or HCl. L-364718 abolished the amylase response to all stimulants. These findings indicate that the early amylase response to intraduodenal tryptophan and oleate is mediated by a neural enteropancreatic reflex ending on M1 receptors rather than by hormone release. However, the activation of (possibly vagal) CCK receptors is essential to run the reflex. The early amylase response to intraduodenal HCl is probably mediated by the release of CCK into the blood circulation.  相似文献   

13.
In this work, we 1) synthesized rat CCK-58, 2) determined the amounts and forms of rat CCK in whole blood after stimulation of its release by casein, 3) determined the potency of CCK-8 and CCK-58 peptides to displace labeled CCK-8 from CCK(A) and CCK(B) receptors transfected into Chinese hamster ovary (CHO) cells, and 4) examined the biological actions of CCK-8 and rat CCK-58 in an anesthetized rat model. CCK-58 was the only detected endocrine form of CCK in rat blood. Synthetic rat CCK-58 was less potent than CCK-8 for displacing the label from CCK(A) and CCK(B) receptors in transfected CHO cells. However, rat CCK-58 was more potent than CCK-8 for stimulation of pancreatic protein secretion in the anesthetized rat. In addition, CCK-58 but not CCK-8 stimulated fluid secretion in this anesthetized rat model. These data suggest that regions outside the COOH terminus of rat CCK-58 influence the expression of CCK biological activity. The presence of only CCK-58 in the circulation and the fact that its biological activity differs from CCK-8 suggests that CCK-58 deserves scrutiny in other physiological models of CCK activity.  相似文献   

14.
The effect of luminal gastrin on the secretion of pancreatic juice was studied in seven conscious preruminant calves employing luminal infusions of gastrin and cholecystokinin (CCK)-9 and pharmacological CCK1 and CCK2 receptor blocks with antagonists. The study was performed in the preprandial and prandial states. Pharmacological blocking of the CCK2 receptor, like that of the CCK1 receptor, resulted in reduction of pancreatic postprandial secretion and increased the duration of the prandial pattern of duodenal electrical activity. Exogenous luminal gastrin, like luminal CCK-9, enhanced the secretion of pancreatic juice proteins, though the overall effect of gastrin was weaker than that of CCK-9. The effect was inhibited by infusion of CCK2 but also by CCK1 receptor antagonist. In conclusion, duodenal luminal gastrin can stimulate exocrine pancreatic secretion by a mechanism that depends on CCK2 receptors in calves. Involvement of the CCK1 receptor in this mechanism needs further investigation. Prandial pancreatic secretory and duodenal motility cycles can be regulated by endogenous gastrin release.  相似文献   

15.
Immunoreactive cholecystokinin (CCK) levels in human and rat plasma are described using a radioimmunoassay specific for the biologically active sulfated end of CCK. This assay detected significant changes in plasma cholecystokinin levels during intrajejunal administration of amino acids and intravenous infusions of CCK-8 which were followed by increased pancreatic secretion. In humans, the concentration (pg/ml) of plasma cholecystokinin increased from 10.8 to 18.9 following intrajejunal amino acid instillation and from 15.4 to 31.1 during CCK infusion, while pancreatic trypsin secretion increased more than 15 fold. Ingestion of a test meal also caused a rapid and significant elevation (P less than 0.05) in both plasma CCK (14.5-21.7 pg/ml) and gastrin (50-160 pg/ml) levels. In the rat, an injection of 46 ng of CCK-8 produced a 300% increase in immunoreactive plasma CCK levels (2 min) and caused peak pancreatic protein secretion within 5 min; 4 fold lower doses (11.5 ng) elevated plasma CCK by 38% and pancreatic protein secretion to a small but significant extent. The ability of this assay to detect various forms of sulfated CCK in human plasma was also determined. Following gel chromatography on Sephadex G-50, at least three different immunoreactive peaks were found in plasma from fasted subjects and after intrajejunal amino acid stimulation. While the lower molecular weight CCK peptides (CCK-8 and CCK-12) were detected in plasma from both fasted and stimulated subjects, the larger form (CCK-33) was only present in measurable concentrations after amino acid infusion. The simultaneous measurement of increased plasma CCK levels and pancreatic secretion and the changes in the distribution of CCK peptides following amino acid infusion provides strong support that this assay detects physiologically relevant changes in biologically active CCK peptides.  相似文献   

16.
To elucidate the regulatory mechanism of acid secretion by cholecystokinin (CCK) in vivo, we compared the effects of CCK and gastrin on acid secretion and histidine decarboxylase (HDC) activity. We also examined the effects of MK-329, a specific antagonist for pancreatic-type CCK receptor, and L-365,260, a specific antagonist for gastrin-type CCK receptor, on the action of CCK. Graded doses of CCK or gastrin were intravenously infused into conscious rats with gastric fistula. Gastrin-17 I infusion up to 10 nmol/kg/h resulted in dose-related increases in acid secretion. CCK-8 infusion also caused an increase in acid secretion. However, it reached a peak with 0.3 nmol/kg/h CCK-8 and attenuated with higher concentrations of CCK-8. This attenuating effect of a higher dose of CCK was reversed by MK-329, but not by L-365,260. Both CCK and gastrin were potent in increasing fundic HDC activity, and the effect of CCK on HDC activity was significantly inhibited by L-365,260, but not by MK-329. Taken together, the present study suggests that CCK and gastrin stimulate histamine formation via a gastrin-type CCK receptor, and the attenuating action of CCK with higher concentrations on acid secretion in vivo is mediated by a pancreatic-type CCK receptor.  相似文献   

17.
Bombesin is a potent stimulus of both pancreatic protein secretion and plasma pancreatic polypeptide (PP) release in dogs. Physiological plasma levels of PP have been shown to inhibit pancreatic exocrine secretion in dogs. We examined the question whether the concomitant release of PP exerts a suppressive action on the pancreatic exocrine response to bombesin in dogs by measuring pancreatic exocrine secretion with and without in vivo immunoneutralization of PP with a high affinity PP-antiserum. Bombesin was infused in a dose of 150 ng/kg·hr, resulting in a rise of plasma PP from 24±5 to 224±25 pM (p<0.01). Before this bombesin infusion, 7 ml of normal rabbit serum had been administered to the dogs (n=8). At a later stage, the study was repeated after administration of 7 ml of PP-antiserum to the same animals. The bombesin induced increase in pancreatic exocrine secretion during administration of PP-antiserum (flow rate 24±10 ml/hr, protein output 1.35±0.43 g/hr, and bicarbonate output 3.25±1.42 mmol/hr) was not significantly different from that during control rabbit serum (flow rate 21±7 ml/hr, protein output 1.26±0.38 g/hr, and bicarbonate output 3.18±1.10 mmol/hr). It is therefore concluded that the pancreatic exocrine response to bombesin is not affected by the concomitant secretion of PP.  相似文献   

18.
The role played by CCK in the stimulation of pancreatic secretion by duodenal infusion of oleic acid in conscious rats was studied using a potent and specific CCK receptor antagonist. CR-1409 did not alter basal secretion, which does not require CCK. The three doses of CR-1409 that were used (2, 4 and 8 mg/kg/h) suppressed the protein response to duodenal infusion of oleic acid and significantly enhanced the delayed inhibition normally observed in control rats (-81%, -87% and -88% vs. -51% of basal in controls). CR-1409 dose-dependently reduced the volume of pancreatic secretion after duodenal infusion of oleic acid (0.40 +/- 0.02, 0.36 +/- 0.02, 0.34 +/- 0.03 vs. 0.48 +/- 0.04 ml/30 min for 2, 4, 8 mg/kg/h and controls, respectively) and revealed a delayed inhibition of volume and a slight reduction of bicarbonate secretion. CCK appears to be directly responsible for the protein and also water response to duodenal infusion of oleic acid, and to be indirectly involved in bicarbonate stimulation. PYY antiserum significantly augmented protein output after duodenal infusion of oleic acid (10.75 +/- 1.40, 14.10 +/- 1.60 vs. 8.60 +/- 1.20 mg/30 min, 1 microliter, 2 microliters and controls), but failed to modify the delayed inhibition: PYY modulates the response to duodenal infusion of oleic acid and is not involved in the delayed inhibition, which was shown to be also present for volume, but which is normally masked by the action of CCK.  相似文献   

19.
A Inui  M Okita  T Inoue  N Sakatani  M Oya  H Morioka  T Ogawa  N Mizuno  S Baba 《Peptides》1988,9(5):1093-1100
We investigated the mechanism by which CCK-8 injected into the third cerebral ventricle (ITV administration) inhibits food intake and stimulates insulin and pancreatic polypeptide (PP) secretion in the dog. ITV administration of CCK-8 (4.08 micrograms/5 min) resulted in a significant elevation of plasma insulin and PP concentrations. This effect was abolished by truncal vagotomy and promptly inhibited by ITV administration of atropine (20 micrograms) and proglumide (10 mg). CCK-8 was less effective in increasing insulin and PP concentrations than in reducing feeding. Thus, 1.36 micrograms of ITV CCK-8 markedly reduced food intake to 14, 15, 29 and 31% of control values at 10, 30, 60 and 120 min, respectively. Atropine and naloxone (50 micrograms) had no blocking effect on CCK-8-induced satiety, whereas proglumide antagonized it. These results indicate that ITV CCK-8 effects the endocrine pancreas and food intake through atropine-sensitive and atropine-insensitive mechanisms, respectively, both of which are likely to be mediated by CNS CCK receptors. Intravenous CCK-8 also stimulated PP and insulin release, through mechanisms that were atropine-sensitive and atropine-insensitive, respectively. However, its mode of action, especially on insulin secretion, was quite different from that of ITV CCK-8. Therefore, exogenous CCK appears to act in the brain and the periphery in concert with and independently from cholinergic systems.  相似文献   

20.
Inhibition of CCK or carbachol-stimulated amylase release by nicotine   总被引:1,自引:0,他引:1  
This study was undertaken to investigate the mechanisms of action of nicotine on receptor mediated enzyme secretion in isolated rat pancreatic acini. Acinar cells were isolated from untreated and nicotine treated rats by collagenase digestion and differential centrifugation. Cells from the untreated animals were incubated with either varying concentrations of nicotine (range 10 microM to 30 mM) or with a fixed dose of 10 mM nicotine with varying concentrations of carbachol(10nM to 100 microM). Cells from the nicotine treated animals(16 weeks in drinking water) were incubated with either a fixed dose of CCK-8(10(-10) M) or carbachol(10(-5) M). All incubations were conducted at 37 C for 30 min. Amylase released in the media was measured by spectrophotometry. In pancreatic acinar cells isolated from control rats, amylase release stimulated by carbachol was inhibited by nicotine. Acinar cells isolated from rats treated with nicotine at nicotine concentrations of 1.23 mM also showed significant inhibition of amylase release in response to CCK-8 and carbachol compared to their identical controls. Nicotine induced inhibition curves of amylase release stimulated by carbachol were non-parallel suggesting that the effect of nicotine on acinar cells is regulated by mechanisms other than carbachol receptors. Nicotine may have a direct inhibitory effect on the intracellular mechanisms of pancreatic enzyme secretion. We conclude that the mechanism by which nicotine inhibits pancreatic enzyme secretion is complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号